Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Semisimple representations and affine rings

Author: Daniel R. Farkas
Journal: Proc. Amer. Math. Soc. 101 (1987), 237-238
MSC: Primary 16A38
MathSciNet review: 902534
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If all finite-dimensional representations of an affine algebra are semisimple, then there are only finitely many representations of each degree.

References [Enhancements On Off] (What's this?)

  • [1] Alexander Lubotzky and Andy R. Magid, Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc. 58 (1985), no. 336, xi+117. MR 818915, 10.1090/memo/0336
  • [2] Claudio Procesi, Rings with polynomial identities, Marcel Dekker, Inc., New York, 1973. Pure and Applied Mathematics, 17. MR 0366968
  • [3] Louis Halle Rowen, Polynomial identities in ring theory, Pure and Applied Mathematics, vol. 84, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 576061
  • [4] L. W. Small, Rings satisfying a polynomial identity, Vorlesungen aus dem Fachbereich Mathematik der Universität Essen [Lecture Notes in Mathematics at the University of Essen], vol. 5, Universität Essen, Fachbereich Mathematik, Essen, 1980. Written from notes taken by Christine Bessenrodt. MR 601386

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A38

Retrieve articles in all journals with MSC: 16A38

Additional Information

Keywords: Finite-dimensional representations, polynomial identities
Article copyright: © Copyright 1987 American Mathematical Society