Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The Frattini argument and $ t$-groups


Authors: Ben Brewster and Surinder Sehgal
Journal: Proc. Amer. Math. Soc. 101 (1987), 239-245
MSC: Primary 20D10
DOI: https://doi.org/10.1090/S0002-9939-1987-0902535-5
MathSciNet review: 902535
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: If enough subgroups of a group satisfy the Frattini argument in the group, then normality is a transitive relation within the group. Subgroup functors are used to specify what enough is.


References [Enhancements On Off] (What's this?)

  • [1] D. Barnes and O. H. Kegel, Gaschütz functors on finite soluble groups, Math. Z. 94 (1966), 132-142. MR 0204511 (34:4350)
  • [2] J. C. Beidleman, R. Brewster, and P. Hauck, Fittingfunctoren in endlichen auflösbaren Gruppen. I, Math. Z. 182 (1983), 359-384. MR 696533 (84j:20021)
  • [3] -, Fitting functors in finite solvable groups. II, Proc. Cambridge Philos. Soc. 101 (1987), 37-55. MR 877699 (88i:20026)
  • [4] G. A. Chambers, $ p$-normally embedded subgroups of finite soluble groups, J. Algebra 16 (1970), 442-455. MR 0268275 (42:3174)
  • [5] W. Gaschütz, Gruppen in denen das Normalteilersein transitiv ist, J. Reine Angew. Math. 198 (1957), 87-92. MR 0091277 (19:940b)
  • [6] T. A. Peng, Finite groups with pronormal subgroups, Proc. Amer. Math. Soc. 20 (1969), 232-234. MR 0232850 (38:1173)
  • [7] D. J. S. Robinson, A note on finite groups in which normality is transitive, Proc. Amer. Math. Soc. 19 (1968), 933-938. MR 0230808 (37:6366)
  • [8] -, Groups which are minimal with respect to normality being intransitive, Pacific J. Math. 31 (1969), 777-785. MR 0258943 (41:3588)
  • [9] -, A course in the theory of groups, Graduate Texts in Math., Vol. 80, Springer-Verlag, Berlin and New York, 1982. MR 648604 (84k:20001)
  • [10] W. Sudbrock, Sylowfunctionen in endlichen Gruppen, Rend. Math. Sem. Univ. Padova 36 (1966), 158-184. MR 0202828 (34:2687)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20D10

Retrieve articles in all journals with MSC: 20D10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0902535-5
Keywords: Subgroup functor, $ t$-groups, Frattini-argument
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society