Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Dilations and subnormality


Author: Wacław Szymański
Journal: Proc. Amer. Math. Soc. 101 (1987), 251-259
MSC: Primary 47D05; Secondary 47A20, 47B20
DOI: https://doi.org/10.1090/S0002-9939-1987-0902537-9
MathSciNet review: 902537
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A general view of subnormality via the dilation theory is presented.


References [Enhancements On Off] (What's this?)

  • [1] M. B. Abrahamse, Commuting subnormal operators, Illinois J. Math. 22 (1978), 171-176. MR 0463960 (57:3898)
  • [2] T. Ando and W. Szymanski, Order structure and the Lebesgue decomposition of positive definite operator functions, Indiana Univ. Math. J. 35 (1986), 157-173. MR 825633 (87k:47050)
  • [3] A. Athavale, Holomorphic kernels and commuting operators, preprint, 1986. MR 906808 (88m:47039)
  • [4] J. Bram, Subnormal operators, Duke Math. J. 22 (1955), 75-94. MR 0068129 (16:835a)
  • [5] J. B. Conway, Subnormal operators, Pitman, Boston, Mass., 1981. MR 634507 (83i:47030)
  • [6] J. B. Conway and W. Szymanski, Linear combinations of hyponormal operators, Rocky Mountain J. Math. (to appear). MR 972659 (90a:47059)
  • [7] M. Embry, A generalization of the Halmos-Bram criterion for subnormality, Acta Sci. Math. (Szeged) 35 (1973), 61-64. MR 0328652 (48:6994)
  • [8] P. R. Halmos, Normal dilations and extensions of operators, Summa Brasil. Math. 2 (1950), 125-134. MR 0044036 (13:359b)
  • [9] T. Ito, On the commutative family of subnormal operators, J. Fac. Sci. Hokkaido Univ. (Sapporo) 14 (1958), 1-15. MR 0107177 (21:5902)
  • [10] A. Lubin, Weighted shifts and commuting normal extensions, J. Austral. Math. Soc. Ser. A 27 (1979), 17-26. MR 524154 (80j:47034)
  • [11] M. Slocinski, Normal extensions of commutative subnormal operators, Studia Math. 54 (1976), 259-266. MR 0405153 (53:8948)
  • [12] F. H. Szafraniec, Dilations on involution semigroups, Proc. Amer. Math. Soc. 66 (1977), 30-32. MR 0473873 (57:13532)
  • [13] B. Sz.-Nagy, Extensions of linear transformations in Hilbert space which extend beyond the space, Appendix to F. Riesz and B. Sz.-Nagy, Functional Analysis, Ungar, New York, 1960.
  • [14] W. Szymanski, Positive forms and dilations, Trans. Amer. Math. Soc. 301 (1987), 761-780. MR 882714 (88g:47012)
  • [15] T. Yoshino, On the commuting extensions of nearly normal operators, Tôhoku Math. J. 25 (1973), 263-272. MR 0324465 (48:2817)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47D05, 47A20, 47B20

Retrieve articles in all journals with MSC: 47D05, 47A20, 47B20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0902537-9
Keywords: Positive definite function, dilation, $ {*}$-dilation, subnormality, quasinormality
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society