Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Finite codimensional ideals in Banach algebras

Author: Krzysztof Jarosz
Journal: Proc. Amer. Math. Soc. 101 (1987), 313-316
MSC: Primary 46J05; Secondary 46J20
MathSciNet review: 902548
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ be a commutative, selfadjoint, point spectral Banach algebra and let $ M$ be a finite codimensional closed subspace of $ A$ such that for each $ f$ in $ M$ there are $ n$ distinct maximal ideals $ I_1^f, \ldots ,I_n^f$ of $ A$ with $ f \in I_j^f$. We prove that then there are distinct maximal ideals $ {I_1}, \ldots ,{I_n}$ of $ A$ such that $ M \subset {I_1} \cap \cdots \cap {I_n}$; in particular if codim$ (M) = n$, then $ M$ is an ideal.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46J05, 46J20

Retrieve articles in all journals with MSC: 46J05, 46J20

Additional Information

PII: S 0002-9939(1987)0902548-3
Article copyright: © Copyright 1987 American Mathematical Society