Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Finite codimensional ideals in Banach algebras

Author: Krzysztof Jarosz
Journal: Proc. Amer. Math. Soc. 101 (1987), 313-316
MSC: Primary 46J05; Secondary 46J20
MathSciNet review: 902548
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ A$ be a commutative, selfadjoint, point spectral Banach algebra and let $ M$ be a finite codimensional closed subspace of $ A$ such that for each $ f$ in $ M$ there are $ n$ distinct maximal ideals $ I_1^f, \ldots ,I_n^f$ of $ A$ with $ f \in I_j^f$. We prove that then there are distinct maximal ideals $ {I_1}, \ldots ,{I_n}$ of $ A$ such that $ M \subset {I_1} \cap \cdots \cap {I_n}$; in particular if codim$ (M) = n$, then $ M$ is an ideal.

References [Enhancements On Off] (What's this?)

  • [1] C P. Chen and P. J. Cohen, Ideals of finite codimension in commutative Banach algebras, manuscript.
  • [2] A. M. Gleason, A characterization of maximal ideals, J. Analyse Math. 19 (1967), 171-172. MR 0213878 (35:4732)
  • [3] K. Jarosz, Finite codimensional ideals in function algebras, Trans. Amer. Math. Soc. 287 (1985), 779-785. MR 768740 (86c:46058)
  • [4] J. P. Kahane and W. Żelazko, Characterization of maximal ideals in commutative Banach algebras, Studia Math. 29 (1968), 339-343. MR 0226408 (37:1998)
  • [5] N. V. Rao, Closed subspaces of finite codimension in regular selfadjoint Banach algebras, manuscript.
  • [6] C. R. Warner and R. Whitley, A characterization of regular maximal ideals, Pacific J. Math. 30 (1969), 277-281. MR 0415331 (54:3420)
  • [7] -, Ideals of finite codimension in $ C[0,1]$ and $ {L^1}({\mathbf{R}})$, Proc. Amer. Math. Soc. 76 (1979), 263-267. MR 537085 (81b:46070)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46J05, 46J20

Retrieve articles in all journals with MSC: 46J05, 46J20

Additional Information

Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society