Two notes on imbedded prime divisors

Author:
L. J. Ratliff

Journal:
Proc. Amer. Math. Soc. **101** (1987), 395-402

MSC:
Primary 13A17; Secondary 13E05

DOI:
https://doi.org/10.1090/S0002-9939-1987-0908637-1

MathSciNet review:
908637

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The first note shows that if are any two Noetherian rings, then there exists a Noetherian ring between and which has a maximal ideal such that and is a maximal ideal. The second note shows that if is a Noetherian ring, then there exists a free quadratic integral extension ring of such that and such that if is any regular ideal in and are prime ideals in containing , then there exists an ideal in integrally dependent on such that the prime ideals corresponding to the are prime divisors of for all .

**[1]**L. Dechene,*Adjacent extensions of rings*, Ph. D. Dissertation, Univ. of California, Riverside, 1978.**[2]**E. Graham Evans Jr.,*A generalization of Zariski’s main theorem*, Proc. Amer. Math. Soc.**26**(1970), 45–48. MR**0260716**, https://doi.org/10.1090/S0002-9939-1970-0260716-8**[3]**D. Ferrand and J.-P. Olivier,*Homomorphisms minimaux d’anneaux*, J. Algebra**16**(1970), 461–471 (French). MR**0271079**, https://doi.org/10.1016/0021-8693(70)90020-7**[4]**A. Grothendieck,*Elements de geometrie algebrique*. IV (Premiere Partie), Inst. Hautes Études Sci., Paris, 1964.**[5]**D. Katz, S. McAdam, J. Okon, and L. J. Ratliff, Jr.,*Essential prime divisors and projectively equivalent ideals*, J. Algebra (to appear).**[6]**Stephen McAdam,*Asymptotic prime divisors*, Lecture Notes in Mathematics, vol. 1023, Springer-Verlag, Berlin, 1983. MR**722609****[7]**S. McAdam and L. J. Ratliff, Jr.,*Persistent primes and projective extensions of ideals*, Rocky Mountain J. Math (to appear).**[8]**M. L. Modica,*Maximal subrings*, Ph. D. Dissertation, Univ. of Chicago, 1975.**[9]**Masayoshi Nagata,*On the chain problem of prime ideals*, Nagoya Math. J.**10**(1956), 51–64. MR**0078974****[10]**Masayoshi Nagata,*Local rings*, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers a division of John Wiley & Sons New York-London, 1962. MR**0155856****[11]**L. J. Ratliff Jr.,*On quasi-unmixed local domains, the altitude formula, and the chain condition for prime ideals. II*, Amer. J. Math.**92**(1970), 99–144. MR**0265339**, https://doi.org/10.2307/2373501**[12]**L. J. Ratliff Jr.,*Independent elements, integrally closed ideals, and quasi-unmixedness*, J. Algebra**73**(1981), no. 2, 327–343. MR**640040**, https://doi.org/10.1016/0021-8693(81)90325-2**[13]**L. J. Ratliff Jr.,*Five notes on asymptotic prime divisors*, Math. Z.**190**(1985), no. 4, 567–581. MR**808923**, https://doi.org/10.1007/BF01214755**[14]**Oscar Zariski and Pierre Samuel,*Commutative algebra, Volume I*, The University Series in Higher Mathematics, D. Van Nostrand Company, Inc., Princeton, New Jersey, 1958. With the cooperation of I. S. Cohen. MR**0090581****[15]**Oscar Zariski and Pierre Samuel,*Commutative algebra. Vol. II*, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N. J.-Toronto-London-New York, 1960. MR**0120249**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
13A17,
13E05

Retrieve articles in all journals with MSC: 13A17, 13E05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1987-0908637-1

Keywords:
Cohen-Macaulay ring,
flat extension ring,
grade of an ideal,
integral closure of an ideal,
integral extension ring,
Notherian ring,
prime divisor semilocal ring

Article copyright:
© Copyright 1987
American Mathematical Society