Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the quadratic subfield of a $ {\bf Z}\sb 2$-extension of an imaginary quadratic number field


Author: Akira Endô
Journal: Proc. Amer. Math. Soc. 101 (1987), 417-423
MSC: Primary 11R20; Secondary 11R23
DOI: https://doi.org/10.1090/S0002-9939-1987-0908640-1
MathSciNet review: 908640
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We determine explicitly the quadratic subfield of a noncyclotomic $ {Z_2}$-extension of an imaginary quadratic number field and get a congruence property of the integer solution of a certain indeterminate equation.


References [Enhancements On Off] (What's this?)

  • [1] H. Bauer, Zur Berechnung der $ 2$-Klassenzahl der quadratischen Zahlkörper mit genau zwei verschiedenen Diskriminantenprimteilern, J. Reine Angew. Math. 248 (1971), 42-46. MR 0289453 (44:6643)
  • [2] -, Die $ 2$-Klassenzahlen specieller quadratischer Zahlkörper, J. Reine Angew. Math. 252 (1972), 79-81. MR 0311621 (47:183)
  • [3] J. E. Carroll, On determining the quadratic subfields of $ {Z_2}$-extensions of complex quadratic fields, Compositio Math. 30 (1975), 259-271. MR 0374082 (51:10282)
  • [4] J. E. Carroll and H. Kisilevsky, Initial layers of $ {Z_2}$-extensions of complex quadratic fields, Compositio Math. 3 (1976), 157-168. MR 0406970 (53:10755)
  • [5] H. Hasse, Über die Klassenzahl des Körpers $ P(\sqrt { - p} )$ mit einer Primzahl $ p \equiv 1\bmod {2^3}$, Aequationes Math. 3 (1969), 165-169. MR 0249397 (40:2642)
  • [6] -, Über die Teilbarkeit durch $ {2^3}$ der Klassenzahl imaginär-quadratischer Zahlkörper mit genau zwei verschiedenen Diskriminantenprimteilern, J. Reine Angew. Math. 241 (1970), 1-6. MR 0258792 (41:3438)
  • [7] -, An algorithm for determining the structure of the $ 2$-Sylow subgroup of the divisor class group of a quadratic number field, Sympos. Math. 15 (1975), 341-352. MR 0387239 (52:8082)
  • [8] K. Iwasawa, On $ {Z_l}$-extensions of algebraic number fields, Ann. of Math. (2) 98 (1973), 247-326. MR 0349627 (50:2120)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11R20, 11R23

Retrieve articles in all journals with MSC: 11R20, 11R23


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0908640-1
Keywords: Imaginary quadratic number field, $ {Z_2}$-extension
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society