Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

On the quadratic subfield of a $ {\bf Z}\sb 2$-extension of an imaginary quadratic number field


Author: Akira Endô
Journal: Proc. Amer. Math. Soc. 101 (1987), 417-423
MSC: Primary 11R20; Secondary 11R23
MathSciNet review: 908640
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We determine explicitly the quadratic subfield of a noncyclotomic $ {Z_2}$-extension of an imaginary quadratic number field and get a congruence property of the integer solution of a certain indeterminate equation.


References [Enhancements On Off] (What's this?)

  • [1] Helmut Bauer, Zur Berechnung der 2-Klassenzahl der quadratischen Zahlkörper mit genau zwei verschiedenen Diskriminantenprimteilern, J. Reine Angew. Math. 248 (1971), 42–46 (German). MR 0289453 (44 #6643)
  • [2] Helmut Bauer, Die 2-Klassenzahlen spezieller quadratischer Zahlkörper, J. Reine Angew. Math. 252 (1972), 79–81 (German). MR 0311621 (47 #183)
  • [3] Joseph E. Carroll, On determining the quadratic subfields of 𝑍₂-extensions of complex quadratic fields, Compositio Math. 30 (1975), no. 3, 259–271. MR 0374082 (51 #10282)
  • [4] J. E. Carroll and H. Kisilevsky, Initial layers of 𝑍₁-extensions of complex quadratic fields, Compositio Math. 32 (1976), no. 2, 157–168. MR 0406970 (53 #10755)
  • [5] Helmut Hasse, Über die Klassenzahl des Körpers 𝑃(√-𝑝) mit einer Primzahl 𝑝≡1 𝑚𝑜𝑑.2³, Aequationes Math. 3 (1969), 165–169 (German). MR 0249397 (40 #2642)
  • [6] Helmut Hasse, Über die Teilbarkeit durch 2³ der Klassenzahl imaginärquadratischer Zahlkörper mit genau zwei verschiedenen Diskriminantenprimteilern, J. Reine Angew. Math. 241 (1970), 1–6 (German). MR 0258792 (41 #3438)
  • [7] Helmut Hasse, An algorithm for determining the structure of the 2-Sylow-subgroups of the divisor class group of a quadratic number field, Symposia Mathematica, Vol. XV (Convegno di Strutture in Corpi Algebrici, INDAM, Rome, 1973), Academic Press, London, 1975, pp. 341–352. MR 0387239 (52 #8082)
  • [8] Kenkichi Iwasawa, On 𝑍_{𝑙}-extensions of algebraic number fields, Ann. of Math. (2) 98 (1973), 246–326. MR 0349627 (50 #2120)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11R20, 11R23

Retrieve articles in all journals with MSC: 11R20, 11R23


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1987-0908640-1
PII: S 0002-9939(1987)0908640-1
Keywords: Imaginary quadratic number field, $ {Z_2}$-extension
Article copyright: © Copyright 1987 American Mathematical Society