ON THE ORLICZ-PETTIS PROPERTY IN NONLOCALLY CONVEX F-SPACES

M. NAWROCKI

(Communicated by William J. Davis)

ABSTRACT. Recently, J. H. Shapiro showed that, contrary to the case of separable F-spaces with separating duals, the Orlicz-Pettis theorem fails for \(h_p, \ 0 < p < 1 \), and some other nonseparable F-spaces of harmonic functions. In this paper we give new, much simpler examples of F-spaces for which the Orlicz-Pettis theorem fails; namely weak-L^p sequence spaces \(\ell(p, \infty) \) for \(0 < p < 1 \). We observe that if \(0 < p < 1 \) then the space \(\ell(p, \infty) \) is nonseparable but separable with respect to its weak topology. Moreover, we show that the Orlicz-Pettis theorem holds for every Orlicz sequence space (even nonseparable).

1. Introduction. Let \(X = (X, \tau) \) be a topological vector space whose topological dual space separates points. We say that \(X \) has the Orlicz-Pettis Property (OPP) if every weakly subseries convergent series in \(X \) (i.e. such a series \(\sum x_n \) in \(X \) that \(\text{weak-lim}_{n \to \infty} \sum_{j=1}^n x_{k_j} \) exists for each increasing sequence \(\{k_j\} \) of positive integers) is convergent in \((X, \tau) \). The classical Orlicz-Pettis theorem states that every Banach space has the Orlicz-Pettis Property. The reader is referred to [4] for information about the Orlicz-Pettis theorem and its importance in the development of the theory of F-spaces.

We recall that OPP has all locally convex spaces or separable F-spaces (i.e. complete metrizable t.v.s.) with separating duals. Recently, J. H. Shapiro [5] has shown that the Orlicz-Pettis theorem cannot be extended to the nonseparable case. The aim of this paper is to give new, simpler natural examples of F-spaces without OPP as well as to prove other results mentioned in the abstract.

I wish to thank Lech Drewnowski and Augustyn Ortyński for helpful remarks on this material.

2. The Orlicz-Pettis Property for solid spaces. In the sequel we prefer to work with Mackey topologies instead of weak topologies. We recall that the Mackey topology of a topological vector space \(X = (X, \tau) \) is the strongest locally convex topology \(\mu = \mu(X) \) on \(X \) producing the same topological dual space as \(\tau \). If \((X, \tau) \) is an F-space whose dual separates points, then \(\mu(X) \) coincides with the strongest locally convex topology on \(X \) which is weaker than \(\tau \). Moreover, if \(\mathcal{B} \) is a base of neighborhoods of zero for \(\tau \), then the family \(\{\text{conv}^\prime U : U \in B\} \) is a base of neighborhoods of zero for \(\mu \) (see [5, Theorem 2.9]). The space \((X, \mu(X)) \) being locally convex has OPP. Consequently, an F-space \((X, \tau) \) has the Orlicz-Pettis Property if and only if every \(\mu(X) \)-subseries convergent series in \(X \) is \(\tau \)-convergent.
Throughout this paper we denote by ω the space of all real sequences and by ω_0 the subspace of ω consisting of all sequences with finite supports. By e_n is denoted the nth unit vector in ω and other sequence spaces, $n = 1, 2, \ldots$. For any $x = (t_n) \in \omega$ we define $R_n x = (0, 0, \ldots, 0, t_{n+1}, t_{n+2}, \ldots)$, $n = 1, 2, \ldots$.

A subset E of ω is called solid if $x \in E$ and $y \in \omega$ and $|y| \leq |x|$ implies $y \in E$. Let $X = (X, \tau)$ be a t.v.s. contained set theoretically in ω and containing ω_0. We say that X is solid if there is a base of neighborhoods of zero for τ consisting of solid sets.

For any solid space (X, τ) we denote by X_a or X^a_T the closed linear subspace of X spanned by the unit vectors. Let \mathcal{B} be a base of solid τ-neighborhoods of zero. We observe that for any $U \in \mathcal{B}$ the set $\omega_0 + U$ is solid. Therefore, $X_a = \overline{\omega_0} = \bigcap\{\omega_0 + U : U \in \mathcal{B}\}$ is a solid space. It is obvious that the family of projections $\{R_n : n \in \mathbb{N}\}$ is equicontinuous on X. This immediately implies that the sequence of unit vectors $\{e_n\}$ is a basis of X_a. X_a is solid, so the series $\sum t_n e_n$ is τ-subseries convergent for any $x = (t_n) \in X_a$.

Obviously, every solid F-space has separating dual space. It is easily verified that the convex hull and the closure of any solid set are solid. Thus, $(X, \mu(X))$ is solid for any solid F-space X.

The above observations show that if $x = (t_n) \in X_a \setminus X^a_T$, then the series $\sum t_n e_n$ is $\mu(X)$-subseries convergent but it is not τ-convergent. This proves the following

PROPOSITION 2.1. Let $X = (X, \tau)$ be a solid F-space. If $X^a_T \neq X^a_a$, then X does not have the Orlicz-Pettis Property.

For the proof of our next theorem we need the following version of the more general Kalton result [3].

LEMMA 2.2. Let (Y, ρ) be a separable F-space and let ν be a weaker Hausdorff vector topology on Y. Then any ν-subseries convergent series in Y is ρ-convergent.

THEOREM 2.3. If (X, τ) is an F-space with separating dual space, Y is weakly closed separable subspace of X and X/Y has the Orlicz-Pettis Property, then so does X.

PROOF. Suppose that Y is a separable, weakly closed (so also $\mu(X)$-closed) subspace of X such that X/Y has OPP. Let $\| \cdot \|$ be an F-norm inducing the topology τ and let $\sum x_n$ be any $\mu(X)$-subseries convergent series in X which is not τ-convergent. Then $\{\sum_{j=1}^n x_j\}_{n \in \mathbb{N}}$ is not a Cauchy sequence in X, so there is an $\varepsilon > 0$ and a pair $\{j_n\}$, $\{n\}$ of sequences of positive integers such that $j_1 < l_1 < j_2 < l_2 < \cdots$ and $\|\sum_{j=j_n}^{l_n} x_j\| > \varepsilon$ for $n = 1, 2, \ldots$. Let $y_n = \sum_{j=j_n}^{l_n} x_j$, $n = 1, 2, \ldots$. Then the series $\sum y_n$ is $\mu(X)$-subseries convergent. The canonical quotient mapping $Q : X \to X/Y$ is $(\mu(X), \mu(X/Y))$-continuous, so the series $\sum Q(y_n)$ is $\mu(X/Y)$-subseries convergent. X/Y has OPP, thus the series $\sum Q(y_n)$ is τ/Y-subseries convergent. Passing to a subsequence we may assume that $\sum \|Q(y_n)\| < \infty$, where $\| \cdot \|_1$ is the quotient F-norm of $\| \cdot \|$. Therefore, there is a pair of sequences $\{u_n\} \subset Y$ and $\{v_n\} \subset X$ such that $y_n = u_n + v_n$ and $\sum \|v_n\| < \infty$. The series $\sum v_n$ being absolutely convergent is both τ- and μ-subseries convergent in X. Consequently, the series $\sum u_n$ is μ-subseries convergent in X. However, the space Y is μ-closed in X, so the series $\sum u_n$ is μ-subseries convergent in Y. $(Y, \tau|_Y)$ is a separable F-space and $\mu|_Y$ is a Hausdorff vector topology on Y which is weaker than $\tau|_Y$. By Lemma...
2.2 the series \(\sum u_n \) is \(\tau \)-convergent. Finally, the series \(\sum y_n \) is \(\tau \)-convergent. This contradicts the fact that \(\|y_n\| > \varepsilon \) for \(n = 1, 2, \ldots \).

COROLLARY 2.4. Every Orlicz sequence space has the Orlicz-Pettis Property.

PROOF. Let \(l_\varphi \) be an Orlicz sequence space and let \(Y = (l_\varphi)_a \). Then the quotient space \(l_\varphi / Y \) equipped with the canonical quotient \(F \)-norm is a Banach space (see [2, Proposition 2.1]). Therefore, \(l_\varphi / Y \) has OPP and, obviously, \(Y \) is weakly closed in \(l_\varphi \). Moreover, \(Y \) is separable, so the result directly follows from Theorem 2.3.

2. Weak-\(L_p \) sequence spaces. For any sequence \(x = (t_n) \in \omega \) tending to zero we denote by \(x^* = (t_n^*) \) the nonincreasing rearrangement of the sequence \(|x| = (|t_n|) \).

If \(0 < p < \infty \) then \(l(p, \infty) \) is the space of all sequences \(x = (t_n) \in c_0 \) such that \(\|x\|_{p, \infty} = \sup \{n^{1/p} t_n^*: \ n \in \mathbb{N} \} < \infty \).

It is easy to prove that the family of sets \(U_\varepsilon = \{x \in l(p, \infty) : \|x\|_{p, \infty} \leq \varepsilon \} \), \(\varepsilon > 0 \), is a base of neighborhoods of zero, consisting of solid sets for the unique complete, metrizable vector topology \(\lambda_{p, \infty} \) on \(l(p, \infty) \). Thus, the space \((l(p, \infty), \lambda_{p, \infty}) \) is a solid \(F \)-space (see [1] for more details).

THEOREM 3.1. If \(0 < p \leq 1 \) then \(l(p, \infty) \) does not have the Orlicz-Pettis Property.

PROOF. If \(0 < p < 1 \) then the result immediately follows from Proposition 2.1 and [1, Theorem 4]. Indeed, M. Cwikel essentially showed that every continuous linear functional on \(l(p, \infty) \), \(0 < p < 1 \), vanishing on \(\omega_0 \) is identically equal to zero, so \(\omega_0^* = l(p, \infty) \). However, \((n^{-1/p}) \notin l(p, \infty)_a \) because the series \(\sum n^{-1/p} e_n \) is not \(\lambda_{p, \infty^}\)-convergent in \(l(p, \infty) \).

If \(p = 1 \) then the situation is somewhat more involved. Now, the series \(\sum n^{-1} e_n \) is not \(\mu \)-subseries convergent (see Remarks 3.2). However, it is still possible to find a sequence \(x = (t_n) \) in \(l(p, \infty) \) such that

(i) the series \(\sum t_n e_n \) is not \(\lambda_{1, \infty^}\)-convergent,

(ii) \(x \in l(1, \infty)_a \).

(iii) \(x \in \omega_0 + \text{conv } U_\varepsilon \) for any \(\varepsilon > 0 \).

We construct inductively an increasing sequence \(\{n_k\}_{k=0}^\infty \) of nonnegative integers such that

\[
\frac{1}{j} \sum_{i=1}^{j} \left(n_{k-1} + i \frac{n_k - n_{k-1}}{j} \right)^{-1} > \left(\frac{1}{2} \sum_{i=1}^{j} \frac{1}{i} \right) n_k^{-1}
\]

for \(j = 1, 2, \ldots, k, \ k = 1, 2, \ldots, n_0 = 0, \)

\[k! \text{ divides } n_k - n_{k-1} \quad \text{for } k = 1, 2, \ldots, \]

The above construction is possible because

\[
\lim_{t \to \infty} \frac{1}{j} \sum_{i=1}^{j} t \left(a + i \frac{t - a}{j} \right)^{-1} = \sum_{i=1}^{j} \frac{1}{i}
\]

for any \(a > 0, \ j \in \mathbb{N} \).
Let us denote \(I(k) = \{n_k - 1 + 1, \ldots, n_k\} \) for \(k = 1, 2, \ldots \). We define \(x = (t_n) \in c_0 \) taking \(t_n = n_k^{-1} \) for \(n \in I(k) \), \(k, n \in \mathbb{N} \). The sequence \(x \) is nonincreasing, positive,
\[nt_n \leq 1 \] and \(n_k t_k = 1 \) for \(n, k = 1, 2, \ldots \). This implies that \(\|R_n x\|_{1, \infty} = 1 \) for \(n = 1, 2, \ldots \), so \(x \in l(1, \infty) \) and the series \(\sum t_n x_n \) is not \(\lambda_{1, \infty} \)-convergent. The proof will be finished if we show that \(x \) satisfies (iii).

Fix \(\varepsilon > 0 \). Choose \(j \in \mathbb{N} \) such that
\[
c_j := \frac{1}{2} \sum_{i=1}^{j} \frac{1}{i} > \varepsilon^{-1}.
\]
Then, by (b), \(j \) divides \(n_k - n_{k-1} \) for \(k \geq j \). Let
\[
l_{k,i} = n_{k-1} + i \frac{n_k - n_{k-1}}{j}
\]
for \(i = 0, 1, \ldots, j \), \(k = j, j + 1, \ldots \), and
\[
I(k,i) = \{l_{k,i} + 1, \ldots, l_{k,i+1}\}
\]
for \(i = 0, 1, \ldots, j - 1 \), \(k = j, j + 1, \ldots \). We define \(y_m = (s_{m,n})_{n=1}^{\infty} \in \omega \), \(m = 0, 1, \ldots, j - 1 \), taking
\[
s_{m,n} = \begin{cases}
(c_j l_{k,i+1})^{-1} & \text{if } n \in I(k, (m + i) \mod j) \text{ for some } \\
0 & \text{otherwise.}
\end{cases}
\]
It is easily seen that \(\sup \{n s_{m,n}^* : n \in \mathbb{N}\} \leq \varepsilon \), so \(y_m \in U_\varepsilon \) for \(m = 0, 1, \ldots, j - 1 \). If \(n \in I(k,i) \) for some \(i = 0, 1, \ldots, j - 1 \), \(k = j, j + 1, \ldots \), then by (a)
\[
\frac{1}{j} \sum_{m=0}^{j-1} s_{m,n} = \frac{1}{j} \sum_{i=1}^{j} \left[c_j \left(n_{k-1} + i \frac{n_k - n_{k-1}}{j} \right) \right]^{-1} \geq n_k^{-1} = t_n.
\]
We define \(z = (s_n) \in \omega_0 \) taking \(s_n = t_n \) for \(n = 1, 2, \ldots, n_j - 1 \), and \(s_n = 0 \) for \(n > n_j - 1 \). Therefore, by (c)
\[
|x| < z + \frac{1}{j} \sum_{m=0}^{j-1} y_m \in \omega_0 + \text{conv } U_\varepsilon.
\]
This implies (iii) because the set \(\omega_0 + \text{conv } U_\varepsilon \) is solid.

REMARKS 3.2. (a) We have just observed that the sequence \((n^{-1/p}) \) does not belong to \(l(p, \infty)_a \), \(0 < p < \infty \). Essentially, it is easy to prove that
\[
l(p, \infty)_a = \{x = (t_n) \in c_0 : \lim n^{1/p} t_n^* = 0\}.
\]
(b) We have noticed that if \(0 < p < 1 \) then \(\omega_0 \) is weakly dense in \(l(p, \infty) \). Therefore, \(l(p, \infty) \) for \(0 < p < 1 \) are new examples of \(F \)-spaces which are nonseparable but their weak topologies are Hausdorff and separable (see also [5]).
(c) \(l(1, \infty) \) is nonseparable in its Mackey (so also weak) topology. Indeed, it is easy to see that the functional
\[
q(x) = \sup_n \frac{\sum_{i=1}^{n} t_i^*}{\sum_{i=1}^{n} (1/i)^*}, \quad x = (t_i) \in c_0,
\]
is a continuous norm on $l(1, \infty)$. There is an increasing sequence $\{n_k\}_{k=0}^{\infty}$ of positive integers such that $1/2 \leq q(z_k) \leq 1$, where $z_k = \sum_{n=n_k}^{n_{k+1}} n^{-1} e_n$, $n_0 = 0$, $k = 1, 2, \ldots$. Now we observe that the mapping $l_\infty \ni (s_n) \mapsto \sum s_n z_n$ (the convergence in the product topology) is an isomorphism of l_∞ into $l(1, \infty)$ equipped with the topology ρ induced by q. ρ is weaker than the Mackey topology μ of $l(1, \infty)$, so the space $(l(1, \infty), \mu)$ is nonseparable.

Let us note that the series $\sum n^{-1} e_n$ is not ρ-(so also μ-) convergent.

(d) The author does not know whether the topology ρ defined above coincides with the Mackey topology of $l(1, \infty)$. We have observed only that $\rho \leq \mu(l(1, \infty))$. However, let us notice that ρ induces on $l(1, \infty)_a$ the Mackey topology of $l(1, \infty)_a$.

Indeed, it is easy to prove that if a sequence $x = (t_n)$ is an extreme point of the compact, convex set $B_n = B \cup \text{span}\{e_1, e_2, \ldots, e_n\}$ where $B = \{x \in l(1, \infty) : q(x) \leq 1\}$, $n \in \mathbb{N}$, then $x^* = (1, 1/2, 1/3, \ldots, 1/n, 0, 0, \ldots)$. Therefore, every extreme point of B_n belongs to the unit ball U of $l(1, \infty)_a$. Consequently, $\text{conv} U \supset B \cap \omega_0$. This, the density of ω_0 in $l(1, \infty)_a$, and the homogeneity of the functionals $\|\cdot\|_{1, \infty}$ and q imply that the topology induced by ρ on $l(1, \infty)_a$ is a stronger that $\mu(l(1, \infty)_a)$.

REFERENCES

Institute of Mathematics, A. Mickiewicz University, ul. Matejki 48/49, 60-769 Poznań, Poland