Doubly-periodic solutions of a forced semilinear wave equation

Authors:
M. Arias, P. Martínez-Amores and R. Ortega

Journal:
Proc. Amer. Math. Soc. **101** (1987), 503-508

MSC:
Primary 35L70; Secondary 35B10

DOI:
https://doi.org/10.1090/S0002-9939-1987-0908657-7

MathSciNet review:
908657

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Existence results are obtained for doubly-periodic solutions of a semilinear wave equation when the nonlinearity is bounded in one side.

**[1]**A. Bahri and H. Brezis,*Periodic solution of a nonlinear wave equations*, Proc. Roy. Soc. Edinburgh Sect. A**85**(1980), 313-320. MR**574025 (82f:35011)****[2]**H. Brezis,*Periodic solutions of nonlinear vibrating strings and duality principles*, Bull. Amer. Math. Soc. (N.S)**8**(1983), 409-426. MR**693957 (84e:35010)****[3]**H. Brezis and L. Nirenberg,*Forced vibrations for a nonlinear wave equation*, Comm. Pure Appl. Math.**31**(1978), 1-30. MR**470377 (81i:35112)****[4]**S.-N. Chow and J. Hale,*Methods of bifurcation theory*, Springer-Verlag, Berlin and New York, 1982. MR**660633 (84e:58019)****[5]**R. Kannan and R. Ortega,*Periodic solution of pendulum-type equations*, J. Differential Equation**59**(1985), 123-144. MR**803090 (87f:34045)****[6]**N. Krylová and O. Vejvoda,*A linear and weakly nonlinear equation of a beam: The boundary-value problem for free extremities and its periodic solution*, Czechoslovak Math. J.**21**(96) (1971), 535-566. MR**0289918 (44:7103)****[7]**J. Ward,*Asumptotic conditions for periodic solutions of ordinary differential equations*, Proc. Amer. Math. Soc.**81**(1981), 415-420. MR**597653 (82a:34057)****[8]**-,*A wave equation with a possibly jumping nonlinearity*, Proc. Amer. Math. Soc.**92**(1984), 209-214. MR**754705 (86a:35012)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
35L70,
35B10

Retrieve articles in all journals with MSC: 35L70, 35B10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1987-0908657-7

Keywords:
Nonlinear wave equation,
doubly periodic solutions,
resonance,
-bounds

Article copyright:
© Copyright 1987
American Mathematical Society