Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Small perturbations and the eigenvalues of the Laplacian on large bounded domains


Author: Werner Kirsch
Journal: Proc. Amer. Math. Soc. 101 (1987), 509-512
MSC: Primary 35P20; Secondary 35J25, 47F05
DOI: https://doi.org/10.1090/S0002-9939-1987-0908658-9
MathSciNet review: 908658
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Denote by $ \Delta _L^D$ the Laplacian on a hypercube in $ {{\mathbf{R}}^d}$ with side length $ \pi L$. Also denote by $ N\left( {\lambda ,A} \right)$ the number of eigenvalues of the operator $ A$ below $ \lambda $. If $ V \geq 0$ is a bounded function of compact support, ($ V > 0$ on a set of positive measure) then $ N\left( { - \Delta _L^D,\lambda } \right) - N\left( { - \Delta _L^D + V,\lambda } \right)$ is not bounded as $ L \to \infty $ for dimension $ d > 1$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 35P20, 35J25, 47F05

Retrieve articles in all journals with MSC: 35P20, 35J25, 47F05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0908658-9
Keywords: Dirichlet Laplacian, small perturbation, eigenvalue distribution
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society