CORRIGENDUM TO “PARTITIONS AND DIAMOND”

PIERRE MATET

(Communicated by Thomas J. Jech)

We recall that given an uncountable cardinal \(\kappa \), \(\diamond \kappa \) asserts the existence of a family \(s_\alpha \subseteq \alpha \), \(\alpha < \kappa \), such that the set \(\{ \alpha < \kappa : A \cap \alpha = s_\alpha \} \) is stationary in \(\kappa \) for all \(A \subseteq \kappa \).

It occurred to us that the implication (iv) \(\rightarrow \) (i) in Proposition 4 of [4] needs not hold for \(\kappa > \omega_1 \). In that case, a slight modification of the original argument yields that (i)-(iii) in the proposition are indeed equivalent, and that they are equivalent to this stronger form of (iv): There exists a family \(Z_\alpha \in (\kappa)^2 \), \(\alpha < \kappa \), such that the diagonal intersection \(\Delta\{Z_\alpha(h(\alpha)) : \alpha < \kappa \} \) is stationary for every \(h \in 2^\kappa \).

The incorrect proof relied on the claim, p. 39 of [1], that assuming \(\kappa \) is regular, \(\diamond \kappa \) follows from the existence of a sequence \(s_\alpha \subseteq \alpha \), \(\alpha < \kappa \), such that whenever \(A \subseteq \kappa \), there is an infinite \(\alpha \) with \(A \cap \alpha = s_\alpha \). That this is indeed the case when \(\kappa = \omega_1 \) was shown by Devlin in [2]. However, this cannot be true in general, as it would imply that \(\diamond \kappa \) holds whenever \(\kappa \) is regular and \(\diamond \lambda \) holds for some uncountable cardinal \(\lambda < \kappa \). It is nevertheless possible to generalize Devlin’s result as follows:

PROPOSITION. Let \(\lambda, \kappa \) be infinite cardinals with \(2^\lambda \geq \kappa \). Assume there are \(P_\alpha \), \(\alpha < \kappa \), such that each \(P_\alpha \) is a collection of size \(\leq |\alpha| \) of subsets of \(\alpha \), and that for every \(A \subseteq \kappa \), there is an \(\alpha \geq \lambda \) with \(A \cap \alpha \in P_\alpha \). Then \(\diamond \kappa \) holds.

PROOF. Let \(P_\alpha \), \(\alpha < \kappa \), be as in the statement of the proposition. By a well-known result of Kunen [3], it is enough to show that \(\kappa \) is regular and there exist \(Q_\alpha \), \(\alpha < \kappa \), such that each \(Q_\alpha \) is a collection of size \(\leq |\alpha| \) of subsets of \(\alpha \), and the set \(\{ \alpha : B \cap \alpha \in Q_\alpha \} \) is stationary in \(\kappa \) for all \(B \subseteq \kappa \). Define functions \(i, j \) from \(\kappa \) to \(\kappa \) by letting \(i(\alpha) = \lambda \alpha \) and \(j(\alpha) = 2\alpha \). Set \(N = \kappa - j[\kappa] \). For each \(\alpha \in [\lambda, \kappa) \), denote by \(Q_\alpha \) the collection of all those subsets \(D \) of \(\alpha \) such that there are \(\beta < \lambda \) and \(H \in P_{\alpha + \beta} \) with \(D = j^{-1}[H \cap \alpha] \). Fix \(B \subseteq \kappa \), and let \(C \) be a closed unbounded subset of \(\kappa \). Let \(c_\beta, 0 < \beta < \rho \), be the increasing enumeration of the set \(C \cap [\kappa - \rho, \kappa - 2) \), and put \(c_0 = 0 \). Choose \(E_\beta \subseteq N \) with \(\beta < \rho \), with the following properties: \(E_\beta \subseteq N \cap [c_\beta, c_\beta + \lambda) \), and \(E_\beta \neq H \cap N \cap [c_\beta, c_\beta + \lambda) \) whenever \(H \in P_\alpha \) with \(\alpha \in [c_\beta + \lambda, c_{\beta + 1}) \). Then set \(A = j[B] \cup \left(\bigcup_{\beta < \rho} E_\beta \right) \). Select \(\alpha \geq \lambda \) with \(A \cap \alpha \in P_\alpha \).

It is easily verified that \(B \cap c_\beta \in Q_{c_\beta} \), where \(\beta \) is such that \(\alpha \in [c_\beta, c_\beta + \lambda) \). It only remains to show that \(\kappa \) is regular. First note that \(2^\mu = \kappa \) holds for every cardinal \(\mu \in [\lambda, \kappa) \), as the set \(\bigcup_{\alpha \geq \lambda} Q_\alpha \) has size \(\kappa \). Thus \(cf \kappa = cf(2^\mu) > \mu \) for all \(\mu \in [\lambda, \kappa) \), and consequently \(cf \kappa = \kappa \).

We remark that Theorem 4 (where (b) should read \(\diamond_{\lambda^+}(\lambda^+ - \lambda) \)) of [5] is the special case of our result when \(\kappa = \lambda^+ \). Also, a straightforward modification of the proof of the proposition yields the implication c) \(\rightarrow \) a) of Theorem 3 of [5].
Finally, we would like to point out that in [4], Proposition 3 easily follows from Proposition 1, by the following remark: given a cardinal κ and a family $A_\alpha \in [\kappa]^\kappa$, $\alpha < \kappa$, with the property that $A_\alpha \subseteq A_\beta$ whenever $\beta < \alpha$, there is a $B \in [\kappa]^\kappa$ such that $|B - A_\alpha| < \kappa$ for all α.

REFERENCES

FREIE UNIVERSITÄT BERLIN, INSTITUT FÜR MATHEMATIK II, ARNIMALLEE 3, 1000 BERLIN 33, WEST GERMANY