CONTINUOUSLY HOMOGENEOUS CONTINUA
AND THEIR ARC COMPONENTS

JANUSZ R. PRAJS

(Communicated by Doug W. Curtis)

Abstract. Let X be a continuously homogeneous Hausdorff continuum. We prove that if there is a sequence A_1, A_2, \ldots of its arc components with $X = \text{cl} A_1 \cup \text{cl} A_2 \cup \cdots$, and there is an arc component of X with nonempty interior, then X is arcwise connected. As consequences and applications we get: (1) if X is the countable union of arcwise connected continua, then X is arcwise connected; (2) if X is nondegenerate and metric, the number of its arc components is countable and it contains no simple triod, then it is either an arc or a simple closed curve; and, in particular, (3) an arc is the only nondegenerate continuously homogeneous arc-like metric continuum with countably many arc components.

Introduction. Recall that a space X is said to be continuously homogeneous if for every two points $x, y \in X$ there is a continuous surjection $f: X \to X$ with $f(x) = y$. This notion is due to D. P. Bellamy, and also, in a more general version, to J. J. Charatonik (see [C]). The purpose of this paper is to prove that

$$\text{if a Hausdorff continuum } X \text{ is continuously homogeneous and there is a sequence } A_1, A_2, \ldots \text{ of its arc components such that } X = \text{cl} A_1 \cup \text{cl} A_2 \cup \cdots, \text{ and there is an arc component of } X \text{ with nonempty interior, then } X \text{ is arcwise connected.}$$

As can be seen, this fact is a strengthening of the result 3 of [K2, p. 270]. P. Krupski suggested there that such an improvement (in a somewhat weaker version—see Remark in [K2, p. 271]) might be true.

Actually, conclusion (1) is one of the applications of Theorem 1 below. The notion of an arc component is replaced in this theorem by the concept of a \mathcal{K}-component defined as follows (compare [PI]). Let X be a space and \mathcal{K} be an arbitrary family of subcontinua of X satisfying the two following conditions:

1. if $K = K_1 \cup K_2$ with $K_1, K_2 \in \mathcal{K}$ and $K_1 \cap K_2 = \emptyset$, then $K \in \mathcal{K}$,
2. if $K \in \mathcal{K}$ and $f: X \to X$ is a continuous surjection, then $f(K) \in \mathcal{K}$.

A set $Y \subset X$ is said to be \mathcal{K}-connected if each two of its points lie in a subcontinuum of it belonging to \mathcal{K}. The maximal \mathcal{K}-connected subsets of the space

Received by the editors January 28, 1986 and, in revised form, August 6, 1986.
1980 Mathematics Subject Classification (1985 Revision). Primary 54F20; Secondary 54F65.
Key words and phrases. Continuous homogeneity, covering sequence, Hausdorff continuum, \mathcal{K}-component, simple triod.
are called its \mathcal{K}-components. It can easily be seen that \mathcal{K}-components are arc components when \mathcal{K} is the family of all locally connected metric subcontinua of X. Now we are ready to formulate the theorem.

1. **Theorem.** If a Hausdorff continuum X is continuously homogeneous and there is a sequence A_1, A_2, \ldots of its \mathcal{K}-components such that $X = \text{cl} A_1 \cup \text{cl} A_2 \cup \cdots$, and there is a \mathcal{K}-component of X with nonempty interior, then X is \mathcal{K}-connected.

To give some possible applications of this theorem, other than one of (1), note that if:

- X is planable and \mathcal{K} is the family of all δ-connected subcontinua of X (see [H1, H3 and H2]), or
- \mathcal{K} is the family of all metric subcontinua of X with index of local disconnectivity less than α, for $\alpha < \omega$ (for the definition see [P2, Chapter IV]), or
- \mathcal{K} is the family of all weakly chainable metric subcontinua of X (see [L]), or
- \mathcal{K} is the family of all subcontinua of X that are continuous images of Hausdorff arcs,

then essentially different kinds of \mathcal{K}-connectedness are obtained.

In this way, i.e., by considering an arbitrary \mathcal{K}-connectedness instead of the arc connectedness only, we may extend a number of results concerning continuous homogeneity (e.g. Propositions 4 and 5 of [K1, p. 354], 1 of [K2, p. 269], and Theorem 3 of [CG, p. 341]).

All spaces considered here are assumed to be Hausdorff. A mapping is a continuous mapping between topological spaces, a surjection is a surjective mapping. An arc is a homeomorphic image of the unit segment $[0,1]$, a Hausdorff arc is a linearly ordered continuum. Symbol ab denotes an arc with ends a and b. The union of three arcs px, py, and pz is called a simple triod if $px \cap py = px \cap pz = py \cap pz = \{p\}$. A point e is called an end point of a space X if $e \in X$ and for every two arcs $C_1, C_2 \subset X$ both containing e we have either $C_1 \subset C_2$ or $C_2 \subset C_1$. The letters ω and ω^+ denote the first infinite and the first uncountable ordinal, respectively. In this paper, according to [KM, p. 235], 0 is considered to be a limit ordinal.

Covering sequences of compact spaces. The proof of Theorem 1 makes heavy use of Lemma 3 below. In order to obtain this lemma the notion of a covering sequence of a compact space is employed. This notion is analogous to the concept of a covering sequence of a metric compactum defined in [P1]. Let X be a compact space with card $X \geq \aleph_0$, and let Γ be a limit ordinal of cardinality greater than card X. A sequence $\tau = \{X_\alpha\}_{\alpha < \Gamma}$ of compact subsets X_α of X is called a covering sequence of X provided for every $\alpha < \Gamma$ there is a countable ordinal β such that $\bigcup \{X_\gamma: \alpha \leq \gamma \leq \alpha + \beta\} = X$. For every covering sequence $\tau = \{X_\alpha\}_{\alpha < \Gamma}$ we inductively define another sequence $\{D_\alpha(\tau)\}_{\alpha < \Gamma}$ of compact subsets of X:

- $D_0(\tau) = X$,
- $D_{\alpha+1}(\tau) = \text{cl}(D_\alpha(\tau) \setminus X_\alpha)$,
- $D_\varphi(\tau) = \bigcap \{D_\alpha(\tau): \alpha < \varphi\}$, for each limit ordinal $\varphi > 0$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Note that the sequence \(\{D_a(\tau)\}_{a < \Gamma} \) is decreasing. Observe the following two properties of this sequence.

(2) For every \(a < \Gamma \) with \(D_a(\tau) \neq \emptyset \) there is \(\beta < \Omega \) such that \(D_{a+\beta}(\tau) \subseteq D_a(\tau) \).

Indeed, let \(\beta \) be a number guaranteed by the definition for the number \(a \). Then the family \(\{D_a(\tau) \cap X_\gamma : \alpha \leq \gamma \leq a + \beta\} \) covers the set \(D_a(\tau) \), thus, by the Baire theorem, one of its elements \(D_a(\tau) \cap X_{y_0} \) has nonempty interior in \(D_a(\tau) \). Therefore

\[
D_{a+\beta+1}(\tau) \subset D_{y_0+1}(\tau) = \text{cl}(D_{y_0}(\tau) \setminus X_{y_0}) \subset \text{cl}(D_a(\tau) \setminus X_{y_0}) \subseteq D_a(\tau).
\]

(3) There is an ordinal \(\beta < \Gamma \) with \(D_{\beta}(\tau) = \emptyset \).

In fact, put \(P = \{ \alpha < \Gamma : D_{a+1}(\tau) \subset D_a(\tau) \} \). Then we have \(\text{card} \, P \leq \text{card} \, X \). By (2) we see that there are only countably many ordinals between any \(\alpha \in P \) and its successor in \(P \). Therefore cardinality of the ordinal \(\sup P \) cannot exceed the cardinal \(\aleph_0 \cdot \text{card} \, P \leq \aleph_0 \cdot \text{card} \, X = \text{card} \, X \). By the assumption about the cardinality of \(\Gamma \) we have \(\text{sup} \, P < \Gamma \) which means that the sets \(D_a(\tau) \) for \(a > \sup \, P \) are identical. Thus \(D_a(\tau) = \emptyset \) for such \(a \) by (2).

The minimum ordinal \(\beta \) such that \(D_{\beta}(\tau) = \emptyset \) is denoted by \(\lambda(\tau) \).

For further purposes we define a binary operation \(* \) between covering sequences of the same space. Let \(\tau = \{X_a\}_{a < \Gamma}, \quad \psi = \{Y_a\}_{a < \Gamma} \) be covering sequences of \(X \). Then we put \(\tau \ast \psi = \{Z_a\}_{a < \Gamma}, \) where

\[
Z_{2a} = X_a, \quad Z_{2a+1} = Y_a.
\]

Obviously \(\tau \ast \psi \) is also a covering sequence of \(X \). Now we prove that

(4) \(D_\psi(\tau \ast \psi) \subset D_\psi(\tau) \cap D_\psi(\psi) \) for every limit ordinal \(\varphi < \Gamma \).

Proof. For \(\varphi = 0 \) it is a consequence of the definition. Assume (4) is true for a limit ordinal \(\varphi \). Thus \(D_\psi(\tau \ast \psi) \subset D_\psi(\tau) \), and, using the induction, we prove that for every natural \(n \)

\[
D_{\varphi+n}(\tau \ast \psi) \subset D_{\varphi+n}(\tau).
\]

Indeed, noting \(\varphi + 2n = 2\varphi + 2n = 2(\varphi + n) \), we see that

\[
D_{\varphi+2(n+1)}(\tau \ast \psi) \subset D_{\varphi+2n+1}(\tau \ast \psi) = \text{cl}(D_{\varphi+2n}(\tau \ast \psi) \setminus Z_{2\varphi+n})
= \text{cl}(D_{\varphi+2n}(\tau \ast \psi) \setminus Z_{2\varphi+n}) = \text{cl}(D_{\varphi+2n}(\tau \ast \psi) \setminus X_{\varphi+n})
\subset \text{cl}(D_{\varphi+n}(\tau) \setminus X_{\varphi+n}) = D_{\varphi+(n+1)}(\tau).
\]

Hence, by the definition,

\[
D_{\varphi+\omega}(\tau \ast \psi) = \bigcap_{a < \varphi+\omega} D_a(\tau \ast \psi) = \bigcap_{n=0}^{\infty} D_{\varphi+2n}(\tau \ast \psi)
\subset \bigcap_{n=0}^{\infty} D_{\varphi+n}(\tau) = D_{\varphi+\omega}(\tau).
\]

In an analogous way we prove that \(D_{\varphi+\omega}(\tau \ast \psi) \subset D_{\varphi+\omega}(\psi) \), thus

\[
D_{\varphi+\omega}(\tau \ast \psi) \subset D_{\varphi+\omega}(\tau) \cap D_{\varphi+\omega}(\psi).
\]
Now taking into account again the intersection definition of the sets D_α for limit numbers α, and again using the induction we get the required conclusion (4).

If $f: X \to Y$ is a surjection between compact spaces X and Y, and $\tau = \{ X_\alpha \}_{\alpha < \Gamma}$ is a covering sequence of X, then the covering sequence $\{ f(X_\alpha) \}_{\alpha < \Gamma}$ of Y will be denoted by $f(\tau)$. The proof of the following is quite similar to the proof of Lemma 17(a) of [P1], so it is omitted.

If τ is a covering sequence of a compact space X and f:

\[(5) \quad X \to Y \text{ is a surjection, then} \]

\[D_\alpha(f(\tau)) \subseteq f(D_\alpha(\tau)) \quad \text{for every } \alpha < \Gamma.\]

Let a class \mathcal{F} of compact spaces be invariant with respect to continuous mappings, i.e., we assume that each continuous image of any member of \mathcal{F} belongs to \mathcal{F}. Denote by \mathcal{F}_1 the class of all compact spaces being countable unions of their compact subsets belonging to \mathcal{F}. Then, of course, each element of \mathcal{F}_1 admits covering sequences composed of elements of \mathcal{F}. Let $X \in \mathcal{F}_1$. Fix a limit ordinal Γ with cardinality greater than $\text{card} \ X$. Further, put

\[S(X) = \{ \tau: \tau = \{ X_\alpha \}_{\alpha < \Gamma} \text{ is a covering sequence of } X \text{ with} \]

\[X_\alpha \in \mathcal{F} \text{ for every } \alpha < \Gamma \}.\]

Then for every $\alpha < \Gamma$ we put

\[W_\alpha(X, \mathcal{F}) = \bigcap \{ D_\alpha(\tau): \tau \in S(X) \}.\]

We need the following two properties of these sets.

There is the greatest limit number $\varphi_0 < \Gamma$ such that

\[(6) \quad W_{\varphi_0}(X, \mathcal{F}) \neq \emptyset.\]

In fact, the sets $W_\alpha(X, \mathcal{F})$ form a decreasing sequence of compact subsets of X with some $W_\alpha(X, \mathcal{F}) = \emptyset$ (see (3)). By the definitions we have $W_\varphi(X, \mathcal{F}) = \bigcap\{ W_\alpha(X, \mathcal{F}): \alpha < \varphi \}$ for limit ordinals φ. Thus the number $\alpha_0 = \min\{ \alpha: W_\alpha(X, \mathcal{F}) = \emptyset \}$ is nonlimit, so $\alpha_0 = \varphi_0 + n$, where φ_0 is limit and $n > 0$ is natural. The number φ_0 satisfies the required condition.

There is a covering sequence $\tau \in S(X)$ with $\lambda(\tau) = \varphi_0 + n$

\[(7) \quad \text{for some natural } n > 0, \text{ where } \varphi_0 \text{ is as in (6).}\]

Indeed, since $\emptyset = W_{\varphi_0 + \omega}(X, \mathcal{F}) = \bigcap\{ D_{\varphi_0 + \omega}(\tau): \tau \in S(X) \}$ and since the sets $D_\alpha(\tau)$ are compact, there is a finite system $\tau_1, \ldots, \tau_m \in S(X)$ with $\bigcap\{ D_{\varphi_0 + \omega}(\tau_i): \tau \in S(X) \}$ and some $\varphi_0 + n$. Put $\tau = (\cdots (\tau_1 \ast \tau_2) \ast \cdots \ast \tau_m)$. Then $D_{\varphi_0 + \omega}(\tau) \subseteq \bigcap\{ D_{\varphi_0 + \omega}(\tau_i): \tau \in S(X) \}$ and $\lambda(\tau) = \varphi_0 + n$ for some natural $n > 0$.

2. Lemma. If $X \in \mathcal{F}_1$ and $f: X \to Y$ is a surjection, then for each limit ordinal $\varphi < \Gamma$ we have

\[W_\varphi(Y, \mathcal{F}) \subseteq f(W_\varphi(X, \mathcal{F})).\]

Proof. Let $y \in f(W_\varphi(X, \mathcal{F}))$, i.e.,

\[\emptyset = f^{-1}(y) \cap W_\varphi(X, \mathcal{F}) = f^{-1}(y) \cap \bigcap \{ D_\varphi(\tau): \tau \in S(X) \}
\]

\[= \bigcap \{ f^{-1}(y) \cap D_\varphi(\tau): \tau \in S(X) \}.\]
Since all of the sets \(f^{-1}(y) \cap D_{\phi}(\tau) \) are closed subsets of the compact space \(X \), there is a finite system \(\tau_1, \ldots, \tau_m \in S(X) \) such that \(\cap \{ f^{-1}(y) \cap D_{\phi}(\tau_i) : i \in \{1, \ldots, m\} \} = \emptyset \). Put \(\tau = (\cdots (\tau_1 \ast \tau_2) \ast \cdots \ast \tau_{m-1}) \ast \tau_m \). Then \(\tau \in S(X) \), and by (4) we get
\[
 f^{-1}(y) \cap D_{\phi}(\tau) \subseteq f^{-1}(y) \cap D_{\phi}(\tau_1) \cap \cdots \cap D_{\phi}(\tau_m) = \emptyset,
\]
hence \(y \not\in f(D_{\phi}(\tau)) \). By (5) and by the definition of \(W_{\phi}(Y, \mathcal{F}) \), noting that \(f(\tau) \in S(Y) \), we see \(W_{\phi}(Y, \mathcal{F}) \subseteq D_{\phi}(f(\tau)) \subseteq f(D_{\phi}(\tau)) \). Thus \(y \not\in W_{\phi}(Y, \mathcal{F}) \), which completes the proof.

The following lemma plays a crucial role in the proof of Theorem 1.

3. Lemma. If \(C_1, C_2, \ldots \) is a countable sequence of compact subsets of a compact space \(X \) such that \(X = C_1 \cup C_2 \cup \cdots \), then there is a compact nonempty subset \(F \) of \(X \) such that

(1) \(F \subset f(F) \) for every surjection \(f : X \to X \), and
(2) there are a finite sequence \(C_{i_1}, \ldots, C_{i_n} \) of sets and a finite sequence of mappings \(f_{i_k} : C_{i_k} \to X \) for \(k \in \{1, \ldots, n\} \), such that \(F \subset f_{i_1}(C_{i_1}) \cup \cdots \cup f_{i_n}(C_{i_n}) \).

Proof. Let \(\mathcal{F} \) be the class of all continuous images of the sets \(C_1, C_2, \ldots \). Then, of course, \(\mathcal{F} \) is invariant with respect to continuous mappings and \(X \in \mathcal{F} \). Put \(F = W_{\phi_0}(X, \mathcal{F}) \), where \(\phi_0 \) is the number guaranteed by (6). Then by Lemma 2 we get \(F \subset f(F) \) for each surjection \(f : X \to X \). Let \(\tau = \{ X_\alpha \}_{\alpha < 1} \) be a covering sequence guaranteed by (7). Then since \(D_{\phi_0+\alpha}(\tau) = \emptyset \) we have
\[
 F = W_{\phi_0}(X, \mathcal{F}) \subseteq D_{\phi_0}(\tau) \subseteq X_{\phi_0} \cup X_{\phi_0+1} \cup \cdots \cup X_{\phi_0+(n-1)},
\]
and \(X_{\phi_0+i} \in \mathcal{F} \) for every \(i \in \{0, 1, \ldots, n-1\} \), thus the sets \(X_{\phi_0+i} \) are continuous images of some sets \(C_{i_k} \), which completes the proof.

Proof of Theorem 1. Let \(F \subset X \) be a set guaranteed by Lemma 3 for \(C_i = \text{cl} A_i \). By (2) of Lemma 3 the set \(F \) may be covered by finitely many subcontinua of each containing a dense \(\mathcal{K} \)-connected subset. Let \(F_1, \ldots, F_m \) be such sets with an additional assumption that \(m \) is the minimum number. Without loss of generality we may assume that \(F_i = \text{cl} B_i \) for some \(\mathcal{K} \)-components \(B_i \) of \(X \) for \(i \in \{1, \ldots, m\} \).

Let \(\mathcal{A} \) be the family of all \(\mathcal{K} \)-components of \(X \).

(8) For every \(A \in \mathcal{A} \) we have \(\text{cl} A \cap F \neq \emptyset \).

In fact, consider any surjection \(f : X \to X \) sending a point of \(B_1 \) to a point of \(A \). Then \(f(B_1) \subset A \) and \(f(F_1) = f(\text{cl} B_1) \subset \text{cl} A \). If \(\text{cl} A \cap F \) were empty, the union \(f(F_2) \cup \cdots \cup f(F_m) \) of \(m-1 \) continua with dense \(\mathcal{K} \)-connected subsets would contain \(F \) (since \(F \subset f(F) \subset f(F_1) \cup \cdots \cup f(F_m) \) and \(f(F_1) \cap F = \text{cl} A \cap F = \emptyset \)), contrary to the assumption on \(m \).

Put \(\mathcal{A}_i = \{ A \in \mathcal{A} : \text{cl} A \cap F_i \neq \emptyset \} \) and \(G_i = \text{cl}(\bigcup \mathcal{A}_i) \) for \(i \in \{1, \ldots, m\} \). We prove that
\[
 G_i \cap G_j = \emptyset \quad \text{for } i \neq j, \ i, j \in \{1, \ldots, m\}.
\]

Suppose \(x \in G_i \cap G_j \) with \(j > i \). Let \(U \) be the nonempty interior of a \(\mathcal{K} \)-component \(B_{m+1} \) of \(X \) and let \(f : X \to X \) be a surjection sending \(x \) to a point \(y \in U \). Thus \(f(A), f(B) \subset B_{m+1} \) for some \(A \in \mathcal{A}_i \) and \(B \in \mathcal{A}_j \), and \(\text{cl} B_{m+1} \cap f(F_i) \neq \emptyset \neq \text{cl} B_{m+1} \cap f(F_j) \). Let a surjection \(g : X \to X \) send a point \(p \in \text{cl} B_{m+1} \cap f(F_i) \) to \(y \).
Then \(g(B_{m+1}) \subseteq B_{m+1} \) and \(\text{cl} B_{m+1} \cap g(f) \neq \emptyset \). Let a surjection \(h \colon X \to X \) send a point \(q \in \text{cl} B_{m+1} \cap g(f) \) to \(y \). Then \(h(B_{m+1}) \), \(hgf(B_j) \subseteq B_{m+1} \). Therefore

\[
F \subseteq \text{hgf}(F) \subseteq \text{hgf}(F_1) \cup \cdots \cup \text{hgf}(F_m)
\]

\[
\subseteq \text{hgf}(F_1) \cup \cdots \cup \text{hgf}(F_{i-1}) \cup \text{hgf}(F_{i+1}) \cup \cdots \cup \text{hgf}(F_{j-1})
\]

\[
\cup \text{hgf}(F_{j+1}) \cup \cdots \cup \text{hgf}(F_m) \cup \text{cl} B_{m+1}.
\]

Thus \(m - 1 \) sets with dense \(\mathcal{K} \)-connected subsets cover \(F \), contrary to the assumption on \(m \).

The statement (9), by (8) and by the connectedness of \(X \), implies

(10) \(m = 1 \).

(11) For every \(A \in \mathcal{A} \) we have \(F \subseteq \text{cl} A \).

For, let a surjection \(g \colon X \to X \) send a point of \(B_1 \) to a point of \(A \). Then \(F \subseteq g(F) \subseteq g(\text{cl} B_1) = \text{cl} g(B_1) \subseteq \text{cl} A \).

(12) For every \(A \in \mathcal{A} \) we have \(\text{cl} A = X \).

Indeed, for a given point \(x \in X \) let a surjection \(f \colon X \to X \) send a point \(y \in F \) to \(x \), and let \(B \in \mathcal{A} \) be a \(\mathcal{K} \)-component of \(X \) such that \(f(B) \subseteq A \). Then \(y \in \text{cl} B \) by (11). Therefore \(x = f(y) \in f(\text{cl} B) = \text{cl} f(B) \subseteq \text{cl} A \). Thus we have (12).

To make the proof of Theorem 1 complete, note that since every \(\mathcal{K} \)-component of \(X \) is dense in \(X \) and one \(\mathcal{K} \)-component has nonempty interior, this \(\mathcal{K} \)-component is the only one.

Applications and questions. As an immediate consequence of Theorem 1 and of the Baire theorem we have the following corollary.

4. Corollary. If a continuously homogeneous continuum is the countable union of arcwise connected (\(\mathcal{K} \)-connected) continua, then it is arcwise connected (\(\mathcal{K} \)-connected).

5. Theorem. If a continuously homogeneous nondegenerate metric continuum \(X \) contains no simple triod and it has only countably many arc components, then \(X \) is either an arc or a simple closed curve.

Proof. Let \(A \) be an arc component of \(X \). Then one of the following statements is true:

(1) \(A \) is degenerate,
(2) \(A \) is a simple closed curve,
(3) \(A \) is nondegenerate and it contains no simple closed curve.

In fact, note that if \(A \) contains a simple closed curve, then \(A \) itself is a simple closed curve (otherwise \(A \) would contain a simple triod).

In case (3), since \(A \) contains no simple closed curve, for all points \(a, b \in A \) with \(a \neq b \) there is only one arc \(ab \) in \(A \). Further we observe that in this case one of the following is true:

(3.1) \(A \) has two end points,
(3.2) \(A \) has one end point,
(3.3) \(A \) has no end point.
Namely, if \(e_1, e_2 \in A \) are distinct end points of \(A \), then each point \(p \in A \) belongs to \(e_1 e_2 \). Indeed, if not, let \(q \) be the first point of the arc \(p e_1 \) lying in the arc \(e_1 e_2 \). Then \(pq \cup q e_1 \cup q e_2 \) is a simple triod for \(q \neq e_1 \) and \(q \neq e_2 \). Thus (3.1)–(3.3) are all possibilities and in case (3.1) \(A \) is an arc.

In case (3.2) let \(e \) be the end point of \(A \). Then we inductively construct a well-ordered sequence \((A_\alpha) \) of arcs contained in \(A \) with \(\bigcup_\alpha A_\alpha = A \). Namely,
\[
A_0 = ep \quad \text{for a point} \quad p \in A \setminus \{ e \},
A_\alpha = eq \quad \text{for a point} \quad q \in A \setminus \bigcup \{ A_\beta : \beta < \alpha \}, \quad \text{for} \quad \alpha > 0
\]
(if such \(q \) exists). Let \(A_\alpha = ex \) and \(A_\beta = ey \) for \(\alpha > \beta \). We have \(x \notin ey \), thus \(ex \not\subset ey \), so \(ey \not\subseteq ex \). Hence the sequence \(\{ A_\alpha \} \) is increasing, thus countable.

Further, we may observe that it is a one-to-one image of the half-line.

Similarly we prove that in case (3.3) \(A \) is a one-to-one image of the real line (details of this proof are left to the reader).

Each of these cases implies that \(A \) is an \(F_\alpha \)-set, thus each arc component of \(X \) is an \(F_\alpha \)-set. Since \(X \) has countably many arc components only, by the Baire theorem, we infer that at least one of them has nonempty interior. Applying Theorem 1 we see that \(X \) is arcwise connected. Thus \(X \) is the only arc component satisfying either (2) or (3). Suppose it is neither an arc nor a simple closed curve. Thus it is nonlocally connected (since nondegenerate atriodic locally connected continuum is either an arc or a simple closed curve). There are two possibilities only: (3.2) and (3.3), i.e., \(X \) is a one-to-one image either of the half-line or of the real line. But Krupski showed in [K1, Theorem 4, p. 352] that compact nonlocally connected one-to-one images of the half-line or of the real-line are not continuously homogeneous. This contradiction completes the proof.

J. J. Charatonik and T. Maćkowiak posed in [CM, Problem 3.11] the problem of characterizing continuously homogeneous arc-like continua. The former of the following two corollaries may be considered as a step in a way to do it. It also improves Corollary 1 of [K1, p. 354].

6. Corollary. Let \(X \) be a nondegenerate continuously homogeneous metric continuum with only countably many arc components. Then the following statements are equivalent:

(a) \(X \) is an arc,
(b) \(X \) is arc-like,
(c) \(X \) contains neither a simple triod nor a simple closed curve.

7. Corollary. Under the same assumptions as in Corollary 6, the following statements are equivalent:

(a) \(X \) is a simple closed curve,
(b) \(X \) is circle-like,
(c) \(X \) is not an arc and it contains no simple triod.

There are some interesting questions closely related to the subject of this paper, and also to the results of [K1, K2, CG].
QUESTION 1. If a continuum X is continuously homogeneous and has \mathcal{X}-components (arc components) A_1, A_2, \ldots with $X = \text{cl } A_1 \cup \text{cl } A_2 \cup \cdots$, is each \mathcal{X}-component (arc component) of X necessarily dense in X?

We know that each arc component of a continuously homogeneous continuum X with finitely many arc components is dense in X (see Theorem 3 of [CG]).

QUESTION 2. If a continuously homogeneous continuum X has only countably many \mathcal{X}-components (arc components), is each \mathcal{X}-component (arc component) necessarily dense in X?

QUESTION 3. Under the same conditions as in Question 2, is X necessarily \mathcal{X}-connected (arcwise connected)?

QUESTION 4. What about an answer to Question 3 if we additionally assume that X has only a finite number of \mathcal{X}-components (arc components)?

REFERENCES

[K1] P. Krupski, Continua which are homogeneous with respect to continuity, Houston J. Math. 5 (1979), 345–356.

[P2] ____, Some invariants under perfect mappings and their applications to continua (to appear).

INSTITUTE OF MATHEMATICS, OPOLE PEDAGOGICAL UNIVERSITY, UL. OLESKA 48, 45–951 OPOLE, POLAND