Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Ultrametrically injective spaces


Authors: José M. Bayod and J. Martínez-Maurica
Journal: Proc. Amer. Math. Soc. 101 (1987), 571-576
MSC: Primary 54E35; Secondary 54E40
DOI: https://doi.org/10.1090/S0002-9939-1987-0908671-1
MathSciNet review: 908671
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the injective objects in the category of ultrametric spaces with contractive mappings. As a result, the property of spherical completeness is characterized in several new ways related to extensions of uniformly continuous mappings and to extensions of isometries. A construction of the injective envelope is also given.


References [Enhancements On Off] (What's this?)

  • [1] N. Aronszajn and P. Panitchpakdi, Extension of uniformly continuous transformations and hyperconvex metric spaces, Pacific J. Math. 6 (1956), 405-439. MR 0084762 (18:917c)
  • [2] J. M. Bayod, A spherical completion within the infinitesimal hull of an ultrametric space, Quaestiones Math. 7 (1984), 241-249. MR 771651 (86b:54028)
  • [3] A. W. Dress, Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups. A note on combinatorial properties of metric spaces, Adv. in Math. 53 (1984), 321-402. MR 753872 (86j:05053)
  • [4] R. Ellis, Extending uniformly continuous pseudoultrametrics and uniform retracts, Proc. Amer. Math. Soc. 30 (1971), 599-602. MR 0283752 (44:982)
  • [5] J. R. Isbell, Six theorems about injective metric spaces, Comment. Math. Helv. 39 (1964), 65-76. MR 0182949 (32:431)
  • [6] -, $ s$ admits an injective space, Proc. Amer. Math. Soc. 28 (1971), 259-261. MR 0282333 (43:8045)
  • [7] J. Mai and Y. Tang, An injective metrization for collapsible polyhedra, Proc. Amer. Math. Soc. 88 (1983), 333-337. MR 695270 (84g:54036)
  • [8] G. P. Murphy, A metric basis characterization of Euclidean space, Pacific J. Math. 60 (1975), 159-163. MR 0394446 (52:15248)
  • [9] R. Rammal, G. Toulouse, and M. A. Virasoro, Ultrametricity for physicists, Rev. Modern Phys. 58 (1986), 765-788. MR 854445 (87k:82105)
  • [10] W. H. Schikhof, Isometrical embeddings of ultrametric spaces into non-archimedean valued fields, Indag. Math. 46 (1984), 47-50. MR 748978 (85j:11132)
  • [11] J. H. Wells and L. R. Williams, Embeddings and extensions in analysis, Springer-Verlag, Berlin and New York, 1975. MR 0461107 (57:1092)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54E35, 54E40

Retrieve articles in all journals with MSC: 54E35, 54E40


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0908671-1
Keywords: Injective space, ultrametric (space), spherical completeness, tight extension
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society