Products of a compact space and a metric space

Author:
Yukinobu Yajima

Journal:
Proc. Amer. Math. Soc. **101** (1987), 577-581

MSC:
Primary 54B10; Secondary 54C10, 54C15, 54E35

DOI:
https://doi.org/10.1090/S0002-9939-1987-0908672-3

MathSciNet review:
908672

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the product of a compact space and a metric space . We consider a continuous closed image of . Moreover, we consider a closed subspace in which is a neighborhood retract of it. It is proved in this paper that (respectively, ) is a Lašnev (metrizable) space iff all compact subspaces of are metrizable.

**[M.]**Hušek,*Continuous mapping on subspaces of products*, Conf. Rings of Continuous Functions (Rome, 1973), Symposia Mathematica, vol. 17, Academic Press, 1976, pp. 25-41. MR**0415560 (54:3645)****[K]**B. S. Klebanov,*On the metrization of**-spaces*, Soviet Math. Dokl.**20**(1979), 557-560.**[K]**-,*Closed and inductively closed images of products of metric spaces*, Seminar on General Topology (P. S. Aleksandrov, ed.), Moskov. Gos. Univ., Moscow, 1981, pp. 114-134. MR**656953 (83h:54013)****[MN]**E. Michael and K. Nagami,*Compact-covering images of metric spaces*, Proc. Amer. Math. Soc.**37**(1973), 260-266. MR**0307148 (46:6269)****[S]**V. Ščepin,*Every finite-dimensional compact absolute neighborhood retract is metrizable*, Soviet Math. Dokl.**18**(1977), 402-406.**[S]**-,*Sur les applications continues des cubes de Tihonov*, C.R. Acad. Sci. Paris Ser. A-B**288**(1979), 257-260. MR**524787 (80b:54007)****[T]**K. Tsuda,*Metrizability of general ANR*, Proc. Amer. Math. Soc.**96**(1986). 375-378. MR**818475 (87d:54032)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54B10,
54C10,
54C15,
54E35

Retrieve articles in all journals with MSC: 54B10, 54C10, 54C15, 54E35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1987-0908672-3

Keywords:
Compact space,
metric space,
product,
closed map,
perfect map,
Lašnev space,
-diagonal,
neighborhood retract

Article copyright:
© Copyright 1987
American Mathematical Society