INTEGER PARTS OF POWERS OF QUADRATIC UNITS

DANIEL CASS

(Communicated by Larry J. Goldstein)

ABSTRACT. Let \(\alpha > 1 \) be a unit in a quadratic field. The integer part of \(\alpha^n \), denoted \([\alpha^n]\), is shown to be composite infinitely often. Provided \(\alpha \neq (1 + \sqrt{5})/2 \), it is shown that the number of primes among \([\alpha], [\alpha^2], \ldots, [\alpha^n]\) is bounded by a function asymptotic to \(c \cdot \log^2 n \), with \(c = 1/(2 \log 2 \cdot \log 3) \).

Let \(\alpha > 1 \) be a unit in a quadratic field \(\mathbb{Q}(\sqrt{D}) \), with \(D > 1 \) a square-free rational integer. It is known in some cases that the integer parts \([\alpha^n]\) of powers of \(\alpha \) (\(n = 1, 2, 3, \ldots \)) are composite infinitely often [1]. We show this in general, the proof guaranteeing in fact that infinitely many of the \([\alpha^n]\) are divisible by \([\alpha] \). (There is one exceptional case \(\alpha = (1 + \sqrt{5})/2 \) wherein \([\alpha] = 1 \); here infinitely many of the \([\alpha^n]\) are divisible by \([\alpha^2] > 1 \).

Define \(f_\alpha(x) \) to mean the number of \(n, 1 \leq n \leq x \), for which \([\alpha^n]\) happens to be prime. We derive a bound on \(f_\alpha(x) \) which is independent of both \(\alpha \) and \(\mathbb{Q}(\sqrt{D}) \) (except that we require \(\alpha \neq (1 + \sqrt{5})/2 \)), namely

\[f_\alpha(x) \leq 1 + B(x), \]

where \(B(x) \) denotes here, and in what follows, the number of positive integers \(\leq x \) of the form \(2^r 3^s, r \geq 0, s \geq 0 \).

HEURISTIC REMARK. As \(x \to \infty \) the function \(1 + B(x) \) is asymptotic to \(c \log^2 x \), where \(c = 1/(2 \log 2 \cdot \log 3) \). If one says "\(m \) is prime with probability \(1/\log m \)," then \([\alpha^n]\) is prime with probability about \(1/n \log \alpha \). Summing this for \(n \leq x \) we expect \(\sim (1/\log \alpha) \log x \) primes in the sequence \([\alpha^n]\), \(1 \leq n \leq x \). The latter function grows more slowly than \(c \log^2 x \), so in this sense the bound \(1 + B(x) \) is not at odds with probability.

We show first that for \(\alpha \) with norm \(N(\alpha) = -1 \), \([\alpha]\) divides \([\alpha^n]\) for all odd \(n \). This reduces us to the norm 1 case, in which we show that, if \([\alpha^n]\) is prime, then \(n \) is of the form \(2^r 3^s \) (giving the above bound).

LEMMA 1. Suppose \(\alpha > 1 \) is a unit of \(\mathbb{Q}(\sqrt{D}) \) with \(D > 1 \) squarefree. Write \(t_n \) for \([\alpha^n]\), and let \(N(\beta) \) denote the norm and \(\beta' \) the conjugate of \(\beta \) for \(\beta \) any integer of \(\mathbb{Q}(\sqrt{D}) \). Then:

(a) If \(N(\alpha) = 1 \), then \(t_n = (\alpha^n + \alpha^{-n}) - 1 \).

(b) If \(N(\alpha) = -1 \), then

\[t_n = \begin{cases} \alpha^n - \alpha^{-n}, & \text{if } n \text{ is odd,} \\ (\alpha^n + \alpha^{-n}) - 1, & \text{if } n \text{ is even.} \end{cases} \]
PROOF. \(N(\alpha) = 1 \) means \(\alpha \alpha' = 1 \), so \(\alpha' = \alpha^{-1} \). Write \(\alpha^n \) in the form \((a_n + b_n \sqrt{D})/2\); then \(a_n \) and \(b_n \) are rational integers, and we have \(a_n = \alpha^n + \alpha^{-n} \), so that \(\alpha^n = a_n - \alpha^{-n} \). Since \(0 < \alpha^{-n} < 1 \), part (a) follows.

Now assume \(N(\alpha) = -1 \). Then \(\alpha \alpha' = -1 \) so \(\alpha' = -\alpha^{-1} \). Then \(a_n = \alpha^n + \alpha^{-n} = \alpha^n + (-\alpha^{-1})^n = \alpha^n + (-1)^n \alpha^{-n} \). If \(n \) is odd, then from \(a_n = \alpha^n - \alpha^{-n} \) we have \(\alpha^n = a_n + \alpha^{-n} \), and since \(0 < \alpha^{-n} < 1 \), \(t_n = [\alpha^n] = a_n = \alpha^n - \alpha^{-n} \).

If \(n \) is even, then from \(a_n = \alpha^n + \alpha^{-n} \) we conclude as in case (a) that \(t_n = \alpha^n + \alpha^{-n} - 1 \). \(\square \)

Lemma 2. Suppose \(N(\alpha) = -1 \) and set \(t_n = [\alpha^n] \). Then whenever \(m \geq n \) we have the four following multiplication formulas for \(t_m t_n \), depending on the parity of \(m \) and \(n \):

(a) \(m \) odd, \(n \) odd: \(t_m t_n = t_{m+n} - t_{m-n} \),
(b) \(m \) even, \(n \) odd: \(t_m t_n = t_{m+n} - t_{m-n} - t_n \),
(c) \(m \) odd, \(n \) even: \(t_m t_n = t_{m+n} + t_{m-n} - t_m \),
(d) \(m \) even, \(n \) even: \(t_m t_n = t_{m+n} + t_{m-n} + t_m - t_n + 1 \).

Furthermore, in the case \(N(\alpha) = +1 \), formula (d) holds (without the parity restriction) for any \(m, n \) with \(m \geq n \). In all the formulas \(t_0 \) is allowed and is 1.

Proof. Substitute for \(t_m \) and \(t_n \) their expressions from Lemma 1; the formulas follow (after some algebra).

Lemma 3. Suppose \(N(\alpha) = -1 \) and \(t_n = [\alpha^n] \). Then we have the congruences (to the modulus \(t_1 \)):

\[
t_n \equiv \begin{cases} +1, & n \text{ even}, \\ 0, & n \text{ odd}. \end{cases}
\]

Proof. We have \(t_0 \equiv 1 \), \(t_1 \equiv 0 \). Apply Lemma 2 with \(n = 1 \). Then we only use formulas (a) and (b), and to the modulus \(t_1 \) they both read

\[
0 \equiv t_{m+1} - t_{m-1}.
\]

Therefore \(t_2 \equiv t_0 \equiv 1 \), \(t_3 \equiv t_1 \equiv 0 \), and so on.

Note that (except when \(\alpha = (1 + \sqrt{5})/2 \), when \(t_1 = 1 \)), on considering when \([\alpha^n]\) is composite where \(N(\alpha) = -1 \), the preceding lemma allows us to consider only \([\alpha^2], [\alpha^4], \ldots \), i.e. the sequence \([\beta^n] = [\alpha^{2n}]\), where \(\beta = \alpha^2 \) has norm +1. That \(\alpha = (1 + \sqrt{5})/2 \) is the only quadratic unit for which \(t_1 = [\alpha] = 1 \) follows easily from \(4N(\alpha) = a^2 - Db^2 \).

Lemma 4. Suppose \(N(\beta) = +1 \) \((\beta > 1)\) and \(t_n = [\beta^n] \). Then we have the congruences in the following table, to the modulus \(t_1 \):

\[
\begin{array}{cccccc}
 n \mod 6 & 0 & 1 & 2 & 3 & 4 & 5 \\
t_n \mod t_1 & 1 & 0 & -2 & -3 & -2 & 0
\end{array}
\]

Proof. In formula (d) of Lemma 2 (which applies here in all cases \(m \geq n \)) put \(n = 1 \); to the modulus \(t_1 \) the formula reads

\[
0 \equiv t_{m+1} + t_{m-1} - t_m + 1,
\]

which gives the \(t_m \) (mod \(t_1 \)) recursively, producing the above table. \(\square \)
COROLLARY. Regardless of \(N(\alpha) \), \([\alpha]\) divides \([\alpha^n]\) infinitely often. If \(\alpha \neq (1 + \sqrt{5})/2 \), this \([\alpha]\) is > 1.

LEMMA 5. Suppose \(N(\gamma) = +1 \) (\(\gamma > 1 \)) and set \(t_n = [\gamma^n] \). Then if \(t_n \) is prime, \(n \) is of the form \(2^r 3^s \).

PROOF. First note that \(t_1 > 1 \) since \(N(\gamma) = +1 \) precludes \(\gamma = (1 + \sqrt{5})/2 \). It follows that \(t_h > 1 \) for \(h \geq 1 \).

Suppose \(n \) is not of the form \(2^r 3^s \). Then \(n \) has a factor \(6k + 5 \) or \(6k + 7 \) with \(k \geq 0 \). Write \(n = h(6k + 5) \) or \(n = h(6k + 7) \), with \(h \geq 1 \). Then Lemma 4 with \(\beta = \gamma^h \) shows that \(t_n \) is divisible by \(t_h \), and \(1 < t_h < t_n \) so that \(t_n \) is composite. \(\square \)

COROLLARY. If \(N(\gamma) = +1 \) and \(f_\gamma(x) \) denotes the number of primes among \(t_1, t_2, \ldots, t_n \) with \(n = [x] \), then \(f_\gamma(x) \leq B(x) \).

THEOREM 1. Suppose \(\alpha > 1 \) (\(\alpha \neq (1 + \sqrt{5})/2 \)) is a unit in some quadratic field \(\mathbb{Q}(\sqrt{D}) \), \(D > 1 \) squarefree. With \(f_\alpha(x) \) as above, then

\[
 f_\alpha(x) \leq 1 + B(x).
\]

This bound is independent of \(\alpha \) and \(\mathbb{Q}(\sqrt{D}) \).

PROOF. First suppose \(N(\alpha) = -1 \). Since \(\alpha \neq (1 + \sqrt{5})/2 \), \([\alpha]\) > 1 and Lemma 3 imply that \([\alpha^n]\) is composite if \(n \) is odd and \(\geq 3 \). \(f_\alpha(x) \) is then at most \(1 + e \), where \(e \) is the number of primes among \([\alpha^2], [\alpha^4], \ldots, [\alpha^{n'}] \) (where \(n' \) is either \(n \) or \(n - 1 \)). By Corollary to Lemma 5 with \(\beta = \alpha^2 \), the latter number is at most \(B(x/2) \leq B(x) \); the bound holds.

When \(N(\alpha) = +1 \), Corollary to Lemma 5 already gives the bound. \(\square \)

REMARK. Let \(\alpha = (1 + \sqrt{5})/2 \). If \(n \) is odd and composite, say \(n = n_1 n_2 \) with \(n_1, n_2 \) odd and \(\geq 3 \), then \([\alpha^{n_1}] > 1 \) and Lemma 3 shows that \([\alpha^n]\) is divisible by \([\alpha^{n_1}]\). Hence among the odd powers only \([\alpha^p]\) (with \(p \) an odd prime) can be primes.

REFERENCES

DEPARTMENT OF MATHEMATICS, ST. JOHN FISHER COLLEGE, ROCHESTER, NEW YORK 14618