Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

$ k$-to-$ 1$ functions on an arc


Authors: Hidefumi Katsuura and Kenneth R. Kellum
Journal: Proc. Amer. Math. Soc. 101 (1987), 629-633
MSC: Primary 54C10; Secondary 54C30, 54F15
DOI: https://doi.org/10.1090/S0002-9939-1987-0911022-X
MathSciNet review: 911022
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Recently Jo W. Heath [6] has shown that any $ 2$-to-$ 1$ function from an arc onto a Hausdorff space must have infinitely many discontinuities. Here we investigate extending Heath's result to $ k$-to-$ 1$ functions for $ k > 2$. Examples show that in general Heath's theorem cannot be extended even for functions from an arc into itself. However, if $ f$ is a $ k$-to-$ 1$ function $ (k \geq 2)$ from an arc onto an arc, then we prove that $ f$ has infinitely many discontinuities.


References [Enhancements On Off] (What's this?)

  • [1] K. Borsuk and R. Molski, On a class of continuous maps, Fund. Math. 45 (1958), 84-98. MR 0102063 (21:858)
  • [2] P. Civin, Two-to-one mappings of manifolds, Duke Math. J. 10 (1943), 49-57. MR 0008697 (5:47e)
  • [3] P. Gilbert, $ n$-to-one mappings of linear graphs, Duke Math. J. 9 (1942), 475-486. MR 0007106 (4:88b)
  • [4] O. G. Harrold, The non-existence of a certain type of continuous transformation, Duke Math. J. 5 (1939), 789-793. MR 0001358 (1:223c)
  • [5] O. G. Harrold, Exactly $ (k,1)$ transformations on connected linear graphs, Amer. J. Math. 62 (1940), 823-834. MR 0002554 (2:75c)
  • [6] J. W. Heath, Every exactly $ 2$-to-$ 1$ function on the reals has an infinite set of discontinuities, Proc. Amer. Math. Soc. 98 (1986), 369-373. MR 854049 (87i:54031)
  • [7] V. Martin and J. H. Roberts, Two-to-one transformations on $ 2$-manifolds, Trans. Amer. Math. Soc. 49 (1941), 1-17. MR 0004129 (2:324d)
  • [8] J. Mioduszewski, On two-to-one continuous functions, Dissertationes Math. (Rozprawy Mat.) 24 (1961). MR 0145490 (26:3021)
  • [9] S. B. Nadler, Jr. and L. E. Ward, Jr., Concerning exactly $ (n,1)$ images of continua, Proc. Amer. Math. Soc. 87 (1983), 351-354. MR 681847 (84c:54059)
  • [10] J. H. Roberts, Two-to-one transformations, Duke Math. J. 6 (1940), 256-262. MR 0001923 (1:319d)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54C10, 54C30, 54F15

Retrieve articles in all journals with MSC: 54C10, 54C30, 54F15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0911022-X
Keywords: $ k$-to-$ 1$ function, $ 2$-to-$ 1$ function
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society