ON THE STRUCTURE OF SETS OF UNIQUENESS
RUSSELL LYONS
(Communicated by Richard R. Goldberg)

ABSTRACT. We show that every U_0-set is almost a W-set.

It may be expected that if a Borel set $E \subset \mathbb{T} \overset{\text{def}}{=} \mathbb{R}/\mathbb{Z}$ cannot carry any Borel measure μ whose Fourier-Stieltjes coefficients $\hat{\mu}(n) \overset{\text{def}}{=} \int_{\mathbb{T}} e^{-2\pi int} \, d\mu(t)$ vanish at infinity, then the arithmetic of E is partially responsible. We shall show that this is precisely the case.

Recall the following definitions (see [3]).

DEFINITION. A Borel measure μ on \mathbb{T} is a Rajchman measure if $\lim_{|n| \to \infty} \hat{\mu}(n) = 0$; R denotes the set of Rajchman measures. A set E is a set of uniqueness in the wide sense, or U_0-set, if $\mu_E = 0$ for all $\mu \in R$. A Borel set $E \subset \mathbb{T}$ is a W-set if there is some strictly increasing sequence of integers $\{n_k\}_{k=1}^\infty$ such that for all $x \in E$, $\{n_k x\}$ has a nonuniform asymptotic distribution ν_x.

Let us say that a set E is almost in a class C if for every positive Borel measure μ carried by E, there is a set $F \subset C$ such that $\mu(E \setminus F) = 0$. In [3], we showed that $\mu \in R$ if and only if $\mu_E = 0$ for all $E \in W$. This immediately implies that every U_0-set is almost in W_σ, where W_σ is the class of sets which are countable unions of W-sets. Indeed, given $E \in U_0$ and μ a positive measure carried by E, we have that $\sup_{G \in W_\sigma} \mu G$ is attained. Since $\mu \not\in R$ for all Borel $F \subset E$ unless $\mu F = 0$, it is easy to see that $\sup_{G \in W_\sigma} \mu G = ||\mu||$, whence the claim follows. We shall prove here the following stronger result.

THEOREM. A Borel set E is a U_0-set if and only if E is almost a W-set.

Of course, one direction is trivial since every W-set is a U_0-set. In the other direction, we shall prove a still stronger result. Recall [3] that E is a W_1-set if E is a W-set corresponding to asymptotic distributions ν_x with $\nu_x(1) \neq 0$ for $x \in E$. We shall show that U_0-sets are in fact almost W_1-sets. Furthermore, with the definitions extended as in [3], U_0-sets are almost W_1-sets in all LCA groups. For related results, see [1 and 2].

LEMMA. Let μ be a positive σ-finite measure. Suppose that f and g are measurable functions such that for every x, either $f(x) \neq 0$ or $g(x) \neq 0$. Then there exists a countable set $K \subset]0, \infty[\setminus K$, such that if $\alpha \in]0, \infty[\setminus K$, then $f(x) + \alpha g(x) \neq 0$ for μ-a.e. x.

PROOF. Let $G_\alpha = \{x : f(x) + \alpha g(x) = 0\}$. Then $G_\alpha \cap G_\beta = \emptyset$ if $\alpha \neq \beta$, whence $K = \{\alpha > 0 : \mu G_\alpha > 0\}$ is at most countable. \square

Received by the editors September 25, 1986.
Key words and phrases. Uniqueness, asymptotic distribution modulo 1.
Research partially supported by an American Mathematical Society Research Fellowship.

©1987 American Mathematical Society
0002-9939/87 $1.00 + $.25 per page

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Lemma. Let \(\mu \) be a positive \(\sigma \)-finite measure. Suppose that \(f_n \) are measurable functions bounded by 1 such that for every \(x \), some \(f_n(x) \) is not 0. Then there exist \(\alpha_n > 0 \) such that \(\sum \alpha_n < \infty \) and \(\sum \alpha_n f_n(x) \neq 0 \) for \(\mu \)-a.e. \(x \).

Proof. It is easy to see that we may assume \(\mu \) to be finite. Let \(E_n = \{x: f_n(x) \neq 0\} \). We define \(\alpha_n \) inductively. Let \(\alpha_1 = 1 \). If \(\alpha_1, \ldots, \alpha_N \) have been defined, then choose \(\alpha_{N+1} < \alpha_N/2 \) such that \(\sum_{n \leq N+1} \alpha_n f_n(x) \neq 0 \) \(\mu \)-a.e. on \(\bigcup_{n \leq N+1} E_n \) and also

\[
\mu \left(\left\{ x \in \bigcup_{n \leq N} E_n : \left| \sum_{n \leq N} \alpha_n f_n(x) \right| < 2\alpha_{N+1} \right\} \right) < N^{-1}.
\]

Then if \(\sum_{n \geq 1} \alpha_n f_n(x) = 0 \), we have for all \(N \),

\[
\sum_{n \leq N} \alpha_n f_n(x) = \sum_{n > N} \alpha_n f_n(x) \leq \sum_{n > N} |\alpha_n| < 2\alpha_{N+1},
\]

whence

\[
\mu \left(\left\{ x: \sum_{n \geq 1} \alpha_n f_n(x) = 0 \right\} \right) < N^{-1} + \mu \left(\left(\bigcup_{n \leq N} E_n \right)^c \right).
\]

Since \(N \) is arbitrary, it follows that \(\sum_{n \geq 1} \alpha_n f_n(x) \neq 0 \) \(\mu \)-a.e. \(\square \)

Remark. It is not hard to show by using Fubini's theorem that, in fact, almost all choices of \(\{\alpha_n\} \) satisfy the lemma, where, say, \(\alpha_n \) is chosen independently and uniformly in \([0, n^{-2}]\). One may also show that except for a meager set of positive sequences in \(l^1(\mathbb{Z}^+) \), any positive sequence \(\{\alpha_n\} \) satisfies the lemma.

Proof of the Theorem. Let \(E \) be a \(U_0 \)-set and \(\mu \) a positive Borel measure on \(E \). Then by [3], there are \(W_1 \)-sets \(E_m \) such that \(\mu \left(E \setminus \bigcup_{m \geq 1} E_m \right) = 0 \); such that if the sequence corresponding to \(E_m \) is \(\{n_{k,m}\} \), then \(\{n_{k,m}, x\} \) has an asymptotic distribution \(\nu_{m,x} \) \(\mu \)-a.e.; and such that for all subsequences \(\{n'_{k,m}\} \subset \{n_{k,m}\} \), \(\{n'_{k,m}, x\} \) also has the asymptotic distribution \(\nu_{m,x} \) \(\mu \)-a.e. Note that \(\hat{\nu}_{m,x}(1) \neq 0 \) for \(x \in E_m \). By the lemma, we may choose \(\{\alpha_m\} \) such that \(\alpha_m > 0 \), \(\sum_{m \geq 1} \alpha_m = 1 \), and \(\sum_{m \geq 1} \alpha_m \hat{\nu}_{m,x}(1) \neq 0 \mu \)-a.e. Let \(\{n_{k,i,m}\}_{i=1}^{\infty} \) be any strictly increasing sequence such that for all \(m \),

\[
\lim_{I \to \infty} \frac{1}{I} \text{card}\{i \leq I: m_i = m\} = \alpha_m.
\]

Then it is easy to see by Weyl's criterion that \(\{n_{k,m}, x\} \) has the asymptotic distribution \(\sum \alpha_m \nu_{m,x} \mu \)-a.e. with \((\sum \alpha_m \nu_{m,x})^{-1}(1) \neq 0 \mu \)-a.e. That is, \(F = \{x: \{n_{k,m}, x\} \) has an asymptotic distribution \(\nu_x \) with \(\hat{\nu}_x(1) \neq 0 \} \) is a \(W_1 \)-set such that \(\mu(E \setminus F) = 0 \). \(\square \)

The extension to LCA groups is immediate, save for one subtlety. Namely, given a collection of sequences \(\{\gamma_{k,m}\}_{k \geq 1} \subset \hat{G} (m \geq 1) \) with \(\lim_{k \to \infty} \gamma_{k,m} = \infty \), we must be able to mix subsequences of them (in appropriate proportions) so as to obtain a sequence still tending to \(\infty \). This is achieved by an easy adaptation of the proof of Theorem 14 in [3].

Acknowledgment. I am grateful to Professor Yitzhak Katznelson for a simplifying argument and useful discussion.
BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS, STANFORD UNIVERSITY, STANFORD, CALIFORNIA 94305