Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



More quasireflexive subspaces

Author: Steven F. Bellenot
Journal: Proc. Amer. Math. Soc. 101 (1987), 693-696
MSC: Primary 46B10; Secondary 46B20
MathSciNet review: 911035
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that nonreflexive Banach spaces with a separable dual and the boundedly complete skipped blocking property have quasi-reflexive subspaces. In particular, Bourgain's somewhat reflexive $ {\mathfrak{L}_\infty }$-spaces and Polish Banach spaces are somewhat quasi-reflexive.

References [Enhancements On Off] (What's this?)

  • [1] S. F. Bellenot, Somewhat quasireflexive Banach spaces, Ark. Mat. 22 (1984), 175-183. MR 765410 (86b:46014)
  • [2] J. Bourgain, New classes of $ {\mathfrak{L}^p}$-spaces, Lecture Notes in Math., vol. 889, Springer-Verlag, Berlin and New York, 1981. MR 639014 (83j:46028)
  • [3] J. Bourgain and F. Delbaen, A class of special $ {\mathfrak{L}_\infty }$ spaces, Acta Math. 145 (1980), 155-176. MR 590288 (82h:46023)
  • [4] G. A. Edgar and R. F. Wheeler, Topological properties of Banach spaces, Pacific J. Math. 115 (1984), 317-350. MR 765190 (86e:46013)
  • [5] N. Ghoussoub and B. Maurey, $ {G_\delta }$-embeddings in Hilbert space, J. Funct. Anal. 61 (1985), 72-97. MR 779739 (86m:46016)
  • [6] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I: Sequence spaces, Springer-Verlag, Berlin and New York, 1977. MR 0500056 (58:17766)
  • [7] H. P. Rosenthal, Weak*-Polish Banach spaces,
  • [8] M. Valdivia, A class of Banach spaces, Studia Math. 60 (1977), 11-13. MR 0430755 (55:3760)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B10, 46B20

Retrieve articles in all journals with MSC: 46B10, 46B20

Additional Information

Keywords: Reflexive, quasi-reflexive, boundedly complete, bases and skipped block decompositions, $ {\mathfrak{L}_\infty }$-spaces, Polish Banach spaces
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society