Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Weakly compact bilinear forms and Arens regularity


Author: A. Ülger
Journal: Proc. Amer. Math. Soc. 101 (1987), 697-704
MSC: Primary 46H25; Secondary 46B99, 46G99
DOI: https://doi.org/10.1090/S0002-9939-1987-0911036-X
MathSciNet review: 911036
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ and $ Y$ be two Banach spaces. We show that a bounded bilinear form $ m:X \times Y \to {\mathbf{C}}$ is Arens regular iff it is weakly compact. This result permits us to find very short proofs of some known results as well as some new results. Some of them are: Any $ {C^*}$-algebra, the disk algebra and the Hardy class $ {H^\infty }$ are Arens regular under every possible product. We also characterize the Arens regularity of certain bilinear mappings.


References [Enhancements On Off] (What's this?)

  • [1] C. A. Akemann, P. G. Dodds and J. L. B. Gamlen, Weak compactness in the dual space of $ {C^*}$-algebra, J. Funct. Anal. 10 (1972), 446-450. MR 0344898 (49:9637)
  • [2] R. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839-848. MR 0045941 (13:659f)
  • [3] N. Arikan, Arens regularity and reflexivity, Quart. J. Math. Oxford Ser. 32 (1981), 383-388. MR 635587 (83a:46055)
  • [4] F. F. Bonsall and J. Duncan, Complete normed algebras, Springer-Verlag, Berlin and New York, 1973. MR 0423029 (54:11013)
  • [5] J. Bourgain, New Banach space properties of certain spaces of analytic functions, Proc. Internat. Congress of Mathematicians, vol. II, Warzawa, 1983, pp. 945-951. MR 804748 (86m:46050)
  • [6] P. Civin and B. Yood, The second conjugate space of a Banach algebra as an algebra, Pacific J. Math. 11 (1961), 847-870. MR 0143056 (26:622)
  • [7] W. J. Davis, T. Figiel, W. B. Johnson and A. Pelczyński, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-327. MR 0355536 (50:8010)
  • [8] J. Diestel, Geometry of Banach spaces--Selected topics, Lecture Notes in Math., vol. 485, Springer-Verlag, Berlin and New York, 1975. MR 0461094 (57:1079)
  • [9] J. Duncan and S. A. R. Hosseinium, The second dual of a Banach algebra, Proc. Edinburgh Math. Soc. 84A (1979), 309-325. MR 559675 (81f:46057)
  • [10] N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
  • [11] A. Grothendieck, Sur les applications linéaires faiblement compactes d'espaces du type $ C(K)$, Canad. J. Math. 5 (1953), 129-173. MR 0058866 (15:438b)
  • [12] S. L. Gulick, Commutativity and ideals in the biduals of topological algebras, Pacific J. Math. 18 (1966), 121-137. MR 0194912 (33:3118)
  • [13] U. Haagerup, The Grothendieck inequality for bilinear forms on $ {C^*}$-algebras, Adv. in Math. 56 (1985), 93-116. MR 788936 (86j:46061)
  • [14] J. L. Kelly and I. Namioka, Linear topological spaces, Van Nostrand, Princeton, N.J., 1963. MR 0166578 (29:3851)
  • [15] G. Köthe, Topological vector spaces. I, Springer-Verlag, Berlin and New York, 1969.
  • [16] A. Pelczyński, Structural theory of Banach spaces and its interplay with analysis and probability, Proc. Internat. Congress of Mathematicians, vol. I, Warzawa, 1983, pp. 237-269. MR 804684 (87h:46049)
  • [17] J. Pisier, Grothendieck's theorem for noncommutative $ {C^*}$-algebras with an application on Grothendieck's constants, J. Funct. Anal. 29 (1978), 394-415.
  • [18] J. S. Pym, Remarks on the second duals of Banach algebras, J. Nigerian Math. Soc. 2 (1983), 31-33. MR 780872 (86g:46072)
  • [19] -, The convolution of functionals on spaces of bounded functions, Proc. London Math. Soc. 15 (1965), 84-104. MR 0173152 (30:3367)
  • [20] H. H. Schaefer, Banach lattices and positive operators, Springer-Verlag, Berlin and New York, 1974. MR 0423039 (54:11023)
  • [21] P. K. Wong, On the Arens products and certain Banach algebras, Trans. Amer. Math. Soc. 180 (1973), 437-448. MR 0318885 (47:7431)
  • [22] N. Young, Periodicity of functionals and representations of normed algebras on reflexive spaces, Proc. Edinburgh Math. Soc. 20 (1976), 99-120. MR 0435849 (55:8800)
  • [23] N. Young, The irregularity of multiplication in group algebras, Quart. J. Math. Oxford Ser. 24 (1973), 59-62. MR 0320756 (47:9290)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46H25, 46B99, 46G99

Retrieve articles in all journals with MSC: 46H25, 46B99, 46G99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1987-0911036-X
Keywords: Arens regularity, weakly compact bilinear forms, $ {C^*}$-algebra, disk algebra, Hardy class
Article copyright: © Copyright 1987 American Mathematical Society

American Mathematical Society