Strong limit theorems for blockwise dependent and blockwise quasiorthogonal sequences of random variables
Author:
F. Móricz
Journal:
Proc. Amer. Math. Soc. 101 (1987), 709715
MSC:
Primary 60F15; Secondary 60G50
MathSciNet review:
911038
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: Let be a sequence of random variables with zero mean and finite variance . We say that is blockwise dependent if for each large enough the following is true: if we remove or more consecutive 's from the dyadic block , then the two remaining portions are independent. We say that is blockwise quasiorthogonal if for each , the expectations are small in a certain sense again within the dyadic block . Blockwise independence and blockwise orthogonality are particular cases of the above notions, respectively. We study the a.s. behavior of the series and that of the first arithmetic means . It turns out that the classical strong limit theorems, with one exception, remain valid in this more general setting, too.
 [1]
G.
Alexits, Convergence problems of orthogonal series, Translated
from the German by I. Földer. International Series of Monographs in
Pure and Applied Mathematics, Vol. 20, Pergamon Press, New York, 1961. MR 0218827
(36 #1911)
 [2]
Wassily
Hoeffding and Herbert
Robbins, The central limit theorem for dependent random
variables, Duke Math. J. 15 (1948), 773–780. MR 0026771
(10,200e)
 [3]
F.
Móricz, Moment inequalities and the strong laws of large
numbers, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete
35 (1976), no. 4, 299–314. MR 0407950
(53 #11717)
 [4]
F.
Móricz, The strong laws of large numbers for
quasistationary sequences, Z. Wahrscheinlichkeitstheorie und Verw.
Gebiete 38 (1977), no. 3, 223–236. MR 0436294
(55 #9241)
 [5]
Pál
Révész, The laws of large numbers, Probability
and Mathematical Statistics, Vol. 4, Academic Press, New York, 1968. MR 0245079
(39 #6391)
 [6]
K.
Tandori, Bemerkungen zum Gesetz der großen Zahlen,
Period. Math. Hungar. 2 (1972), 33–39 (German).
Collection of articles dedicated to the memory of Alfréd
Rényi, I. MR 0339325
(49 #4084)
 [1]
 G. Alexits, Convergence problems of orthogonal series, Pergamon Press, New YorkOxford, 1961. MR 0218827 (36:1911)
 [2]
 W. Hoeffding and H. Robbins, The central limit theorem for dependent random variables, Duke Math. J. 15 (1948), 773780. MR 0026771 (10:200e)
 [3]
 F. Móricz, Moment inequalities and the strong laws of large numbers, Z. Wahrsch. Verw. Gebiete 35 (1976), 299314. MR 0407950 (53:11717)
 [4]
 , The strong laws of large numbers for quasistationary sequences, Z. Wahrsch. Verw. Gebiete 38 (1977), 223236. MR 0436294 (55:9241)
 [5]
 P. Révész, The laws of large numbers, Academic Press, New YorkLondon, 1968. MR 0245079 (39:6391)
 [6]
 K. Tandori, Bemerkungen zum Gesetz der grossen Zahlen, Period. Math. Hungar. 2 (1972), 3339. MR 0339325 (49:4084)
Similar Articles
Retrieve articles in Proceedings of the American Mathematical Society
with MSC:
60F15,
60G50
Retrieve articles in all journals
with MSC:
60F15,
60G50
Additional Information
DOI:
http://dx.doi.org/10.1090/S00029939198709110383
PII:
S 00029939(1987)09110383
Keywords:
dependent random variables,
orthogonal random variables,
first arithmetic means,
strong limit theorems,
strong laws of large numbers
Article copyright:
© Copyright 1987 American Mathematical Society
