Total paracompactness of real GO-spaces

Authors:
Zoltán T. Balogh and Harold Bennett

Journal:
Proc. Amer. Math. Soc. **101** (1987), 753-760

MSC:
Primary 54F05; Secondary 54D18

DOI:
https://doi.org/10.1090/S0002-9939-1987-0911046-2

MathSciNet review:
911046

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A topological space is said to be totally paracompact (resp. totally metacompact) if every open base of it has a locally finite (resp. pointfinite) subcover. In this paper we characterize all totally paracompact GO-spaces constructed on the real line. It turns out that in the class of GO-spaces on the real line, total paracompactness and total metacompactness are equivalent. Another consequence of our characterization is that totally metacompact GO-spaces on the real line are metrizable. Questions and partial results are given concerning total paracompactness in subspaces of real GO-spaces.

**[**H. R. Bennett and D. J. Lutzer, eds.,**BL**]*Topology and ordered structures*, Part 1, Mathematical Centre Tracts No. 142, Amsterdam, 1981.**[**H. Bennet and D. J. Lutzer,**BL**]*A note on perfect normality in generalized ordered spaces*, Topology and order structures, Part 2 (Amsterdam, 1981) Math. Centre Tracts, vol. 169, Math. Centrum, Amsterdam, 1983, pp. 19–22. MR**736689****[Fa]**M. J. Faber,*Metrizability in generalized ordered spaces*, Mathematisch Centrum, Amsterdam, 1974. Mathematical Centre Tracts, No. 53. MR**0418053****[Fo]**R. M. Ford,*Basis properties in dimension theory*, Doctoral Dissertation, Auburn University, Auburn, Ala., 1963.**[H]**R. W. Heath,*Screenability, pointwise paracompactness, and metrization of Moore spaces*, Canad. J. Math.**16**(1964), 763–770. MR**0166760**, https://doi.org/10.4153/CJM-1964-073-3**[Le]**A. Lelek,*Mathematical Problem Book*, Univ. of Houston, Problem No. 99.**[Lu]**D. J. Lutzer,*On generalized ordered spaces*, Dissertationes Math. Rozprawy Mat.**89**(1971), 32. MR**0324668****[M]**E. Michael,*The product of a normal space and a metric space need not be normal*, Bull. Amer. Math. Soc.**69**(1963), 375–376. MR**0152985**, https://doi.org/10.1090/S0002-9904-1963-10931-3**[**J. M. O’Farrell,**OF**]*The Sorgenfrey line is not totally metacompact*, Houston J. Math.**9**(1983), no. 2, 271–273. MR**703275****[**J. M. O'Farrell,**OF**]*Some results concerning the Hurewicz property*, Fund. Math. (to appear).**[S]**R. H. Sorgenfrey,*On the topological product of paracompact spaces*, Bull. Amer. Math. Soc.**53**(1947), 631–632. MR**0020770**, https://doi.org/10.1090/S0002-9904-1947-08858-3**[T]**R. Telgársky,*Total paracompactness and paracompact dispersed spaces*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.**16**(1968), 567–572 (English, with Loose Russian summary). MR**0235517****[TK]**R. Telgársky and H. Kok,*The space of rationals is not absolutely paracompact*, Fund. Math.**73**(1971/72), no. 1, 75–78. MR**0293585**, https://doi.org/10.4064/fm-73-1-75-78

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54F05,
54D18

Retrieve articles in all journals with MSC: 54F05, 54D18

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1987-0911046-2

Keywords:
Real GO-space,
totally paracompact,
totally metacompact,
dense and codense example,
metrizable

Article copyright:
© Copyright 1987
American Mathematical Society