Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Embeddings of differential operator rings and Goldie dimension

Author: Declan Quinn
Journal: Proc. Amer. Math. Soc. 102 (1988), 9-16
MSC: Primary 16A05,; Secondary 17B30,17B35
MathSciNet review: 915706
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The differential operator ring $ S = R[x;\delta ]$ can be embedded in $ {A_1}(R)$, the first Weyl algebra over $ R$, where $ R$ is a $ {\mathbf{Q}}$-algebra and $ \delta $ is a locally nilpotent derivation on $ R$. Furthermore $ {A_1}(R)$ is again a differential operator ring over the image of $ S$. We consider similar embeddings of the smash product $ R\char93 U(L)$, where $ L$ is a finite dimensional Lie algebra and $ U(L)$ is its universal enveloping algebra. We show that the Weyl algebra over $ R$ has the same Goldie dimension as $ R$ itself and use this to prove that $ R$ and $ R[x;\delta ]$ have the same Goldie dimension where $ R$ is again a $ {\mathbf{Q}}$-algebra and $ \delta $ is locally nilpotent.

References [Enhancements On Off] (What's this?)

  • [1] R. J. Blattner and S. Montgomery A duality theorem for Hopf module algebras, J. Algebra 95 (1985), 153-172. MR 797661 (87h:16016)
  • [2] W. Borho, P. Gabriel, and R. Rentschier, Primideale in Einhullenden aufl o osbarer Lie-Algebren, Lecture Notes in Math., vol. 357, Springer-Verlag, Berlin and New York, 1973.
  • [3] T. Masuda, Duality for a differential crossed product and its periodic cohomology, C. R. Acad. Sci. Paris Sér. I 301 (1985), 551-553. MR 816626 (86m:46071)
  • [4] Y. Nouaze and P. Gabriel, Idéaux premiers de l'algèbre enveloppante d'une algèbre de Lie nilpotente, J. Algebra 6 (1967), 77-99. MR 0206064 (34:5889)
  • [5] R. C. Shock, Polynomial rings over finite dimensional rings, Pacific J. Math. 42 (1972), 251-257. MR 0318201 (47:6748)
  • [6] G. Sigurdsson, Differential operator rings whose prime factors have bounded Goldie dimension, Arch. Math. (Basel) 42 (1984), 348-353. MR 753356 (86e:16004)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 16A05,, 17B30,17B35

Retrieve articles in all journals with MSC: 16A05,, 17B30,17B35

Additional Information

Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society