Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


Galois endomorphisms of the torsion subgroup of one-parameter generic formal groups

Author: Karl Zimmermann
Journal: Proc. Amer. Math. Soc. 102 (1988), 22-24
MSC: Primary 14L05,; Secondary 11G07,11S31
MathSciNet review: 915708
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {{\mathbf{Z}}_p}$ be the ring of $ p$-adic integers and let $ \Gamma $ be a one-parameter generic formal group of finite height $ h$ defined over $ {{\mathbf{Z}}_p}\left[ {\left[ {{t_1}, \ldots ,{t_{h - 1}}} \right]} \right] = A$. Let $ K$ be the field of fractions of $ A,G = \operatorname{Gal}\left( {\bar K/K} \right)$ and $ T\left( \Gamma \right)$ the Tate module of $ \Gamma $. The purpose of this paper is to give an elementary proof that the $ \operatorname{map}\operatorname{End}_{A}\left( \Gamma \right) \to \operatorname{End}_{G}\left( {T\left( \Gamma \right)} \right)$ is a surjection.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14L05,, 11G07,11S31

Retrieve articles in all journals with MSC: 14L05,, 11G07,11S31

Additional Information

PII: S 0002-9939(1988)0915708-3
Keywords: One parameter formal group, local ring
Article copyright: © Copyright 1988 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia