Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A further refinement of the Bruhat decomposition


Author: Charles W. Curtis
Journal: Proc. Amer. Math. Soc. 102 (1988), 37-42
MSC: Primary 20G15
DOI: https://doi.org/10.1090/S0002-9939-1988-0915711-3
MathSciNet review: 915711
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Kawanaka obtained explicit formulas for the structure constants in the Hecke algebra $ H\left( {G\left( q \right),B\left( q \right)} \right)$ of a finite Chevalley group $ G\left( q \right)$. This note contains a geometric interpretation of these formulas, involving decompositions of Bruhat cells, in connected reductive algebraic groups.


References [Enhancements On Off] (What's this?)

  • [1] A. Borel and J. Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55-150; ibid. 41 (1972), 253-276.
  • [2] B. Chang, Decomposition of Gelfand-Graev characters of $ {\text{G}}{{\text{L}}_3}\left( q \right)$, Comm. Algebra 4 (1976), 375-401. MR 0401940 (53:5766)
  • [3] V. Deodhar, On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells, Invent. Math. 79 (1985), 499-511. MR 782232 (86f:20045)
  • [4] N. Kawanaka, Unipotent elements and characters of finite Chevalley groups, Osaka J. Math. 12 (1975), 523-554. MR 0384914 (52:5784)
  • [5] R. Steinberg, Lectures on Chevalley groups, Yale University, 1967. MR 0466335 (57:6215)
  • [6] T. Yokonuma, Sur le commutant d'une représentation d'un groupe de Chevalley fini, C. R. Acad. Sci. Paris 264 (1967), 433-436. MR 0212102 (35:2977)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20G15

Retrieve articles in all journals with MSC: 20G15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0915711-3
Keywords: Reductive algebraic groups, Bruhat decomposition, Hecke algebra
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society