RANDOM SIGN EMBEDDINGS FROM l^n_r, $2 < r < \infty$

T. FIGIEL, W. B. JOHNSON, AND G. SCHECHTMAN

(Communicated by William J. Davis)

ABSTRACT. Estimates for any ideal norm of a “random sign embedding” from l^n_r into l^n_p, $2 < r < \infty$, are given in terms of the corresponding ideal norm of the identity of l^n_k, $k = k(n, m, r)$.

1. Introduction. A norm one linear operator u from l^n_r ($1 < r < \infty$) into a Banach space is called a δ-sign embedding (where $\delta > 0$) provided

$$
\left\| u \sum_{i=1}^{n} \varepsilon_i e_i \right\| \geq \delta n^{1/r}
$$

for all choices of signs $\varepsilon_i \pm 1$. (Here $(e_i)_{i=1}^{n}$ denotes the unit vector basis for l^n_r.) If the weaker condition

$$\text{Average} \left\{ \left\| u \sum_{i=1}^{n} \varepsilon_i e_i \right\| : (\varepsilon_i) \in \{-1, 1\}^n \right\} \geq \delta n^{1/r}
$$

is satisfied, we say that u is a random δ-sign embedding.

The most striking result concerning these concepts is J. Elton's theorem [E] (extended by A. Pajor [Pa] to complex Banach spaces) that if u is a random δ-sign embedding from l^n_1, then there is a subset A of $\{1, \ldots, n\}$ with cardinality $k \equiv |A| \geq \varepsilon n$ so that the restriction of u to l^n_A has isomorphism constant at most K, where $\varepsilon > 0$ and $K < \infty$ are constants which depend only on δ. Predating Elton’s theorem was the result from [JS] that when the random δ-sign embedding u from l^n_1 takes values in L_1, the space $u l^n_A$ is a well-complemented copy of l^n_1 in L_1 and hence the identity operator on l^n_1 well factors through the operator u. From results stated but not proved in [JS] it can be derived that if u is a random δ-sign embedding from l^n_1 into L_p for $1 < p < 2$, then the identity on l^n_k well factors through u for some $k \geq n^{1-\varepsilon}$ and any $\varepsilon > 0$ (where, of course, how well depends on ε). Actually, simpler considerations yield that the identity on l^n_k with k proportional to n weakly factorizes through such a u; this fact is recorded in Remark 3. (“Weak factorization” is defined in Proposition 2.)

There cannot be any such results in the range $r > 2$ because

$$n^{1/r-1/2} I : l^n_r \to l^n_2
$$

is a 1-sign embedding and hence by the results of [FLM or BDGJN], there is for some $\delta > 0$ a δ-sign embedding u from l^n_r into l^n_m with $m \leq n^{r/2}$ whose factorization
constant \(\gamma_2(u) \) through a Hilbert space is less than 2. The purpose of this note is to observe that this phenomenon cannot occur if \(m \) is proportional to \(n \); for example, if \(2 < r < \infty \) and \(u: l_r^n \rightarrow l_2^m \) is a random \(\delta \)-sign embedding, then the identity operator on \(l_r^k \) with \(k \) proportional to \(n \) has a good weak factorization through \(u \), which yields that for any ideal norm \(\alpha \),

\[
\alpha(u) \geq \varepsilon \alpha(l_r^n),
\]

where \(\varepsilon > 0 \) is a constant which depends only on \(\delta \) and \(r \) and

\[
\alpha(l_r^n) \equiv \alpha(I: l_r^n \rightarrow l_r^n).
\]

We are interested in this result mainly for the ideal norm \(S_p \), \(1 \leq p < \infty \), defined by

\[
S_p(u: X \rightarrow Y) = \inf \left\{ \|w\|\|v\|: u = vw, \ w: X \rightarrow E, \ v: E \rightarrow Y, \ E \text{ a subspace of } L_p(\mu) \text{ for some measure } \mu \right\}.
\]

This case is applied in [CJ]; indeed, the possibility of such an application motivated this note. In fact, in the first version of this note, Theorem 1 was stated only for \(\alpha = S_p \). We are indebted to the referee for pointing out that our argument yields Proposition 2 and the present statement of Theorem 1.

In §2 we repeat the known observation that, up to constants depending on \(p \) and \(r \), if \(r > 2 \) and \(1 < p < \infty \), then \(S_p(l_r^n) \) is the same as \(\gamma_p(l_r^n) \), the factorization constant of the identity of \(l_r^n \) through an \(L_p \) space. This latter constant is known, up to constants depending on \(r \) and \(p \), to be of order \(n^a \) for an appropriate exponent \(\alpha = \alpha(p, r) \). The values for \(\alpha \) are catalogued in Pietsch’s book [P] and repeated in §2.

We use standard Banach space theory notation and terminology as may be found in [LT].

2. Random sign embeddings from \(l_r^n \). We now state the result of this note.

THEOREM 1. Let \(2 < r < \infty \). If \(u: l_r^n \rightarrow l_r^n \) is a random \(\delta \)-sign embedding, then for any ideal norm \(\alpha \),

\[
\alpha(u) \geq \tau \alpha(l_r^n),
\]

where

\[
\tau = 2^{-1/\tau} (\delta/r^{1/2})^{2(r-1)/(r-2)} (n/m)^{1/(r-2)}
\]

and

\[
k \geq \tau^r n/(1 - \tau^r).
\]

As pointed out by the referee, Theorem 1 is an immediate consequence of Proposition 2. The referee’s concept of weak factorization introduced in the proposition is the obvious operator theoretic analogue to the weak distance studied by N. Tomczak-Jaegermann [T-J].

PROPOSITION 2. Let \(r, u, \delta, \tau \) and \(k \) be as in Theorem 1. Then \(I: l_r^k \rightarrow l_r^k \) \(\tau^{-1} \)-weakly factorizes through \(u \); i.e., \(I \) is in the convex hull of the set

\[
\{wuv: v: l_r^k \rightarrow l_r^n, w: l_r^n \rightarrow l_r^k; \|w\| \cdot \|v\| \leq \tau^{-1}\}.
\]
PROOF. From Khintchine's inequality we have

\[\left\| \left(\sum_{i=1}^{n} |u \cdot e_i|^2 \right)^{1/2} \right\|_r \geq \delta r^{-1/2} n^{1/r}, \]

where the functional operations \(|x|^2\) and \(|x|^{1/2}\) are taken with respect to the lattice structure of \(l^m\).

On the other hand, regarding \(u\) as an operator into \(l^\infty\),
\[\|u\|_{l^\infty} \leq \|u\|_{l^r} \rightarrow l^m \| = 1, \]
so, setting \(1/r + 1/s = 1\), we easily check that

\[\left\| \left(\sum_{i=1}^{n} |u \cdot e_i|^s \right)^{1/s} \right\|_\infty \leq 1. \]

Indeed,
\[\left\| \left(\sum_{i=1}^{n} |u \cdot e_i|^s \right)^{1/s} \right\|_\infty = \max_{1 \leq j \leq m} \sup_{1 \leq i \leq n} \left\{ \left(\sum_{i=1}^{n} |a_i u \cdot e_i|^s \right)^{1/s} : \left(\sum_{i=1}^{n} |a_i|^r \right)^{1/r} = 1 \right\} \]
\[= \sup \left\{ \left\| u \sum_{i=1}^{n} a_i e_i \right\|_\infty : \left(\sum_{i=1}^{n} |a_i|^r \right)^{1/r} = 1 \right\} \]
\[= \|u\|_{l^r} \rightarrow l^m \| \leq 1. \]

An extrapolation argument now yields

\[\max_{1 \leq i \leq n} |u \cdot e_i| \geq 2^{1/r} r n^{1/r}. \]

To see this, set \(\theta = s/2\), so that \(1/2 = \theta/s + (1 - \theta)/\infty\). Then

\[\delta r^{-1/2} n^{1/r} \leq \left\| \left(\sum_{i=1}^{n} |u \cdot e_i|^2 \right)^{1/2} \right\|_r \text{ (by (i))} \]
\[\leq \left\| \left(\sum_{i=1}^{n} |u \cdot e_i|^s \right)^{\theta/s} \max_{1 \leq i \leq n} |u \cdot e_i|^{1-\theta} \right\|_r \]
\[\leq \left\| \left(\sum_{i=1}^{n} |u \cdot e_i|^s \right)^{1/s} \right\|_r \max_{1 \leq i \leq n} |u \cdot e_i|^{1-\theta} \]
\[\leq m^{\theta/r} \left\| \left(\sum_{i=1}^{n} |u \cdot e_i|^s \right)^{1/s} \right\|_r \max_{1 \leq i \leq n} |u \cdot e_i|^{1-\theta} \]
\[\leq m^{\theta/r} \left\| \max_{1 \leq i \leq n} |u \cdot e_i|^{1-\theta} \right\|_r \text{ (by (ii))} . \]

The conclusion of Proposition 2 follows in a formal way from condition (iii) via a combination of more-or-less standard techniques.
For $1 \leq i \leq n$, define

$$A_i' = \left\{ j : |ue_i(j)| = \max_{1 \leq k \leq m} |ue_i(k)| \right\}$$

and set $A_i = A_i' \setminus \bigcup_{j<i} A_j'$. Since the A_i's are pairwise disjoint, we have

$$(iv) \quad \left(\sum_{i=1}^{n} ||ue_i 1_{A_i}||_r \right)^{1/r} = \left(\sum_{i=1}^{n} ||ue_i||_r \right) = \max_{1 \leq i \leq r} ||ue_i||_r.$$

Setting $A = \{ i \leq n : ||ue_i 1_{A_i}|| \geq \tau \}$, we check that

$$(v) \quad |A| \equiv k \geq \tau^n n/(1 - \tau^r).$$

Indeed, since $||ue_i 1_{A_i}||_r \leq 1$ for each i, (iv) and (iii) yield $k + \tau(n - k) \geq 2\tau n$ so that $(1 - \tau^r)k \geq \tau^n$.

The rest of the proof is really just an application of Tong's diagonal principle (see [LT, p. 20]).

Assume, for notional convenience, that $A = \{1, \ldots, k\}$ and let P be the norm one projection from l^m_r onto $\text{span}(ue_i 1_{A_i})_{i=1}^k$. For each ϵ in $\{-1, 1\}^k$, define $v_{\epsilon} : l^k_r \to l^m_r$ and $\tilde{w}_{\epsilon} : \text{span}(ue_i 1_{A_i})_{i=1}^k \to l^k_r$ by setting

$$v_{\epsilon} e_i = \epsilon(i) e_i; \quad \tilde{w}_{\epsilon}(ue_i 1_{A_i}) = \epsilon(i) e_i$$

and let $w_{\epsilon} = \tilde{w}_{\epsilon} P$; $w_{\epsilon} : l^m_r \to l^k_r$. Evidently $||v_{\epsilon}|| = 1$, $||w_{\epsilon}|| \leq \tau^{-1}$, and it is easy to check that $I : l^k_r \to l^k_r = \text{Average}_{\epsilon} w_{\epsilon} w_{\epsilon}$. \square

REMARK 3. Suppose that $u : l^k_r \to L_r$ is a random δ-sign embedding and $1 < r < 2$. Khintchine's inequality yields that

$$\left(\frac{\delta}{2}\right)n^{1/r} \leq \left(\sum_{i=1}^{n} |ue_i|^{r} \right)^{1/2} \leq \left(\sum_{i=1}^{n} |ue_i|^{r} \right)^{1/r} \leq n^{1/r},$$

so the extrapolation argument used in the proof of Proposition 2 gives

$$\left(\frac{\delta}{2}\right)^{2/(2-r)} n^{1/r} \leq \max_{1 \leq i \leq n} |ue_i|.$$

The further argument in Proposition 2 shows that the identity operator on l^k_r with k proportional to n has a good weak factorization through u.

We close with a catalogue of estimates for $S_p(l^k_r)$ when $2 < r < \infty$. First, a simple exchangeability argument (see, for example, [JMST, p. 34]) shows that $S_p(l^k_r)$ is obtained via an operator which maps $(e_i)_{i=1}^k$ onto a normalized 1-symmetric basic sequence in L_p. Now for $1 \leq p \leq 2$, L_p has cotype 2, so

$$S_p(l^k_r) \sim d(l^k_r, l^k_2) = k^{1/2 - 1/r}$$

and the constant of equivalence is absolute.

For $2 < p < r$, L_p has cotype p with constant 1 if the average in the definition of cotype is in the l_p-sense, so in this range

$$S_p(l^k_r) = d(l^k_r, l^k_p) = k^{1/p - 1/r}.$$

When $2 < p < \infty$, up to a constant depending on p, all the normalized 1-symmetric sequences are by Theorem 1.1 of [JMST] just symmetric versions of
Rosenthal’s X_p basis [R], and all X_p spaces are K_p-isomorphic to K_p-complemented subspaces of L_p. Consequently, for any $1 \leq r \leq \infty$, $S_p(l_r^k) \sim \gamma_p(l_r^k)$ up to a constant depending only on p. It is possible, but not completely straightforward, to compute $S_p(l_k^r)$ or $\gamma_p(l_k^r)$ up to constants depending on p when $2 < r < p$ by computing the norm of the identity operators between l_k^r and symmetric X_k^p spaces; however, these parameters were first calculated in a different way by Gluskin, Pietsch, and Puhl [GPP, Pi]. They checked that in the range $2 < r < p < \infty$, up to constants depending on p, we have

$$\gamma_p(l_r^k) \sim n^\alpha,$$

where $\alpha = (1/r - 1/p)(1/2 - 1/r)/(1/2 - 1/p)$.

Remark 4. After the research on this paper was completed, J. Bourgain and L. Tzafriri proved the nice result that condition (iii) in the proof of Proposition 2 implies that the identity operator on l_r^k $K(r)$-factors through u for some $k \geq \varepsilon(r)n$.

References

Institute of Mathematics, Polish Academy of Sciences, Gdansk, Poland

Department of Mathematics, Texas A&M University, College Station, Texas

Department of Theoretical Mathematics, Weizmann Institute, Rehovot, Israel

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use