Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Random sign embeddings from $ l^n_r,\;2 < r < \infty$


Authors: T. Figiel, W. B. Johnson and G. Schechtman
Journal: Proc. Amer. Math. Soc. 102 (1988), 102-106
MSC: Primary 46B25,; Secondary 47B10,47B37,47D30
DOI: https://doi.org/10.1090/S0002-9939-1988-0915724-1
MathSciNet review: 915724
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Estimates for any ideal norm of a "random sign embedding" from $ l_r^n$ into $ l_r^m,\;2 < r < \infty $, are given in terms of the corresponding ideal norm of the identity of $ l_r^k,\;k = k(n,m,r)$.


References [Enhancements On Off] (What's this?)

  • [BDGJN] G. Bennet, L. E. Dor, V. Goodman, W. B. Johnson, and C. M. Newman, On uncomplemented subapces of $ {L^p},1 < p < 2$, Israel J. Math 26 (1977), 178-187. MR 0435822 (55:8778)
  • [CJ] C. M. Cho and W. B. Johnson, $ M$-ideals and ideals in $ L(X)$, J. Operator Theory 16 (1986), 245-260. MR 860345 (88c:47093)
  • [E] J. Elton, Sign-embedding on $ l_1^n$, Trans. Amer. Math. Soc. 279 (1983), 113-124. MR 704605 (84g:46023)
  • [FLM] T. Figiel, J. Lindenstrauss, and V. Milman, The dimension of almost spherical sections of convex bodies, Acta Math. 139 (1977), 53-94. MR 0445274 (56:3618)
  • [GPP] E. D. Gluskin, A Pietsch, and J. Puhl, A generalization of Khintchine's inequality and its application in the theory of operator ideals, Studia Math. 68 (1980), 149-155. MR 583295 (81m:47031)
  • [JMST] W. B. Johnson, B. Maurey, G. Schechtman, and L. Tzafriri, Symmetric structures in Banach spaces, Mem. Amer. Math. Soc., no. 217, vol. 19 (1979). MR 527010 (82j:46025)
  • [JS] W. B. Johnson and G. Schechtman, On subspaces of $ {L_1}$ with maximal distances to Euclidean space, Proc. Research Workshop on Banach space Theory, Univ. of Iowa, 1981, pp. 83-96. MR 724107 (85e:46015)
  • [LT] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces. I, Sequence spaces, Springer-Verlag, Berlin and New York, 1977. MR 0500056 (58:17766)
  • [Pa] A. Pajor, Prolongement de $ l_1^n$ dans les espaces de Banach complexes, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 741-743. MR 707332 (84g:46024)
  • [P] A. Pietsch, Operator ideals, North-Holland, Amsterdam, 1980. MR 582655 (81j:47001)
  • [Pi] -, Rosenthal's inequality and its application in the theory of operator ideals, Proc. Internat. Conf. Operator Algebras, Ideals, ..., Teubner-Texte zur Math., Leipzig, 1978, pp. 80-88.
  • [R] H. P. Rosenthal, On the subspaces of $ {L^p}(p > 2)$ spanned by sequences of independent random variables, Israel J. Math. 8 (1970), 273-303. MR 0271721 (42:6602)
  • [T-J] N. Tomczak-Jaegermann, The weak distance between finite dimensional Banach spaces, Math. Nachr. 119 (1984), 291-307. MR 774197 (87d:46024)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B25,, 47B10,47B37,47D30

Retrieve articles in all journals with MSC: 46B25,, 47B10,47B37,47D30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0915724-1
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society