Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Lagrangian systems in the presence of singularities


Authors: A. Capozzi, C. Greco and A. Salvatore
Journal: Proc. Amer. Math. Soc. 102 (1988), 125-130
MSC: Primary 58F22,; Secondary 34C25,58E05,70H35
DOI: https://doi.org/10.1090/S0002-9939-1988-0915729-0
MathSciNet review: 915729
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we study dynamical systems embedded in a conservative field of forces, whose potential is "singular." We look for $ T$-periodic solutions of these systems by variational methods.


References [Enhancements On Off] (What's this?)

  • [1] V Benci, Normal modes of a Lagrangian system constrained in a potential well, Ann. Inst. H. Poincaré 1 (1984), 379-400. MR 779875 (86h:58048)
  • [2] V. Benci, A. Capozzi, and D. Fortunato, Periodic solutions of Hamiltonian systems with superquadratic potential, Ann. Mat. Pura Appl. 143 (1986), 1-46. MR 859596 (87m:58050)
  • [3] A. Capozzi, D. Fortunato, and A. Salvatore, Periodic solutions of Lagrangian systems with bounded potential, J. Math. Anal. Appl. 124 (1987), 482-494. MR 887004 (88h:58026)
  • [4] A. Capozzi and A. Salvatore, Periodic solutions of Hamiltonian systems: The case of the singular potential, Nonlinear Functional Analysis and Applications (S. P. Singh, Editor), Reidel NATO AS1-e 173, 1986, 207-216. MR 852580 (87k:58080)
  • [5] F. Giannoni, Soluzioni periodiche di sistemi Hamiltoniani in presenza di vincoli, Pubbl. Dip. Mat. Univ. Pisa 11 (1983).
  • [6] W. B. Gordon, Conservative dynamical systems involving strong forces, Trans. Amer. Math. Soc. 204 (1975), 113-135. MR 0377983 (51:14152)
  • [7] -, A minimizing property of Keplerian orbits, Amer. J. Math. 99 (1977), 961-971. MR 0502484 (58:19497)
  • [8] C. Greco, Remarks on periodic solutions of second order Hamiltonian systems in an unbounded potential well, Nonlinear Oscillation for Conservative Systems, Proc. Venice, January 1985 (A. Ambrosetti), Pitagora Ed., Bologna, 1985, pp. 37-41.
  • [9] J. Mawhin and M. Willem, Multiple solutions of the periodic boundary value problem for some forced pendulum-type equations, J. Differential Equations 52 (1984), 264-287. MR 741271 (85h:34050)
  • [10] A. Salvatore, Periodic solutions of Hamiltonian systems with a subquadratic potential, Boll. Un. Mat. Ital. C 1 (1984), 393-406. MR 749296 (85m:58076)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 58F22,, 34C25,58E05,70H35

Retrieve articles in all journals with MSC: 58F22,, 34C25,58E05,70H35


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0915729-0
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society