A Tauberian theorem for Hausdorff methods

Authors:
Brian Kuttner and Mangalam R. Parameswaran

Journal:
Proc. Amer. Math. Soc. **102** (1988), 139-144

MSC:
Primary 40G05,; Secondary 40E05

DOI:
https://doi.org/10.1090/S0002-9939-1988-0915732-0

MathSciNet review:
915732

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a regular Hausdorff summability method defined by the function . It is shown that if is absolutely continuous on , then the methods and are equivalent for bounded sequences, where belongs to a certain class of summability methods which includes the Cesàro methods , the Abel method , and the methods .

**[1]**R. G. Cooke,*On mutual consistency and regular**-limits*, Proc. London Math. Soc. (2)**41**(1936), 113-125.**[2]**G. H. Hardy,*Divergent series*, Oxford Univ. Press, Oxford, 1949. MR**0030620 (11:25a)****[3]**B. Kuttner and M. R. Parameswaran,*A product theorem and a Tauberian theorem for Euler methods*, J. London Math. Soc. (2)**18**(1978), 299-304. MR**509945 (80d:40003)****[4]**M. R. Parameswaran,*On a generalization of a theorem of Meyer-König*, Math. Z.**162**(1978), 201-204. MR**0510540 (58:23243)****[5]**-,*A converse product theorem in summability*, Comment. Math.**22**(1980), 131-134. MR**610340 (82d:40008)****[6]**-,*A general Tauberian theorem*, Glasnik Mat.**14 (34)**(1979), 83-86. MR**544066 (80i:40002)****[7]**A. J. Stam,*Wiener's Tauberian theorem for Hausdorff limitation methods*, Nieuw Arch. Wisk. (3)**25**(1977), 182-185. MR**0481722 (58:1821)****[8]**K. Zeller and W. Beekmann,*Theorie der Limitierungsverfahren*, Springer-Verlag, Berlin and New York, 1970. MR**0264267 (41:8863)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
40G05,,
40E05

Retrieve articles in all journals with MSC: 40G05,, 40E05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0915732-0

Article copyright:
© Copyright 1988
American Mathematical Society