ON IMMERSED COMPACT SUBMANIFOLDS OF EUCLIDEAN SPACE

MARCO RIGOLI

(Communicated by David G. Ebin)

ABSTRACT. Given an immersion \(f: M \to \mathbb{R}^n \) of a compact Riemannian manifold \(M \) we prove a simple criterion involving the tension field of \(f \) to determine whether or not \(f \) is an isometry.

1. Introduction. Let \(f: M \to \mathbb{R}^n \) be an immersion of a Riemannian manifold into Euclidean space. A natural problem is to determine whether or not \(f \) is an isometry. In this note we give a proof of the following simple result (see §2 for details).

THEOREM. Let \(M \) be an \(m \)-dimensional, compact, oriented, Riemannian manifold with metric \(ds^2 \) and let \(f: M \to \mathbb{R}^n \) be an immersion. Set \(ds^2 \) for the induced metric on \(M \) via \(f \), \(u \) for the ratio of the volume elements, \(\tau \) for the tension field of \(f \) and \(H \) for the mean curvature vector of \(f: (M, ds^2) \to \mathbb{R}^n \). Then \(f \) is an isometry iff

(i) \(\langle f, \tau - umH \rangle \geq 0 \) and

(ii) \(f \) is volume decreasing for \(m > 3 \),

(iii) \(f \) is volume preserving for \(m = 2 \),

(iv) \(f \) is volume increasing for \(m = 1 \).

REMARKS. 1. The necessity of the above conditions is clear. Indeed if \(f \) is an isometry then \(u = 1 \), that is \(f \) is volume preserving, and \(\tau = mH \) (see §2).

2. For \(m = 2 \) in the proof of the theorem it will become apparent that (i) alone implies that \(f \) is conformal. We wish to state this in the form of the following:

PROPOSITION. Let \(f: M \to \mathbb{R}^n \) be an immersed compact Riemannian surface. Then \(f \) is conformal iff \(\tau = 2uH \).

PROOF. Sufficiency follows from above. Necessity follows from a well-known computation of the tension field (for instance see Hoffman-Osserman [1]).

3. A step in the proof of the theorem is based on the following result from linear algebra. Let \(V \) be a real \(m \)-dimensional vector space, \(G \) an inner product in \(V \) and \(H \) a symmetric semi-positive-definite bilinear form. Let \((g_{ij}), (h_{ij}) \) be their matrices with respect to a basis of \(V \). Set \(g = \det(g_{ij}) \) and \(h = \det(h_{ij}) \); clearly \(g > 0 \) and \(h \geq 0 \). For \(\lambda \) a parameter consider the determinant

\[
\det(g_{ij} + \lambda h_{ij}) = g + mP\lambda + \cdots + h\lambda^m,
\]

Received by the editors March 17, 1986 and, in revised form, October 1, 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 53C42; Secondary 53A07.

Key words and phrases. Isometric immersion, tension field, ratio of the volume elements.

©1988 American Mathematical Society

0002-9939/88 $1.00 + $.25 per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

153
where P is a polynomial in the entries of the matrices of G and H. It is easily verified that the quantity P/g is independent of the basis chosen in V; we claim that

$$P/g \geq (h/g)^{1/m}$$

where the equality sign holds iff $h_{ij} = \rho g_{ij}$ for a certain ρ. Indeed we choose a basis of V such that $g_{ij} = \delta_{ij}$ and (h_{ij}) is diagonal so that $(h_{ij}) = \text{diag}(\lambda_1, \ldots, \lambda_m)$. Then (1) becomes

$$\frac{1}{m} \sum_{i=1}^{m} \lambda_i \geq \left(\prod_{i=1}^{m} \lambda_i \right)^{1/m}$$

and the result is known as a standard inequality.

2. Preliminaries on differential geometry. We realize the Euclidean space \mathbb{R}^n as the homogeneous space $E(n)/SO(n)$, where $E(n) = SO(n) \times \mathbb{R}^n$ is the group of rigid motions and $SO(n)$ its isotropy subgroup at the origin 0 of \mathbb{R}^n. From now on we fix the indices convention $1 \leq A, B, \ldots \leq n$, $1 \leq i, j, \ldots \leq m$, $m + 1 \leq \alpha, \beta, \ldots \leq n$. If Θ^B_A, Θ^A denote the components of the Maurer-Cartan form of $E(n)$ and s is a local section of the bundle $E(n) \to \mathbb{R}^n$ the forms

$$\theta^A = s^* \Theta^A$$

give a local orthonormal coframe in \mathbb{R}^n whose corresponding Levi-Civita connection forms are

$$\theta^A_B = s^* \Theta^A_B.$$

From now on we will drop the pull-back notation because it will be clear from the context where the forms must be considered. Let $f: M \to \mathbb{R}^n$ be an immersion of an m-dimensional manifold. A Darboux frame along f is a (locally defined) smooth function e on M with values in $E(n)$ of the form

$$e: p \to (e_A(p), f(p))$$

where $e_A(p)$ are the columns of an $SO(n)$ matrix such that the vectors $e_i(p)$ span the image of the tangent space of M at p under the differential of f and determine the correct orientation. It follows that on M

$$de_A = \theta^B_A \otimes e_B,$$

$$\theta^\alpha = 0.$$

In particular (6) implies that the metric $d\sigma^2$ induced by f on M can be written as

$$d\sigma^2 = \sum_i (\theta^i)^2.$$

Suppose now M is an oriented Riemannian manifold with metric ds^2. Let ϕ^i be an oriented orthonormal (local) coframe on it with corresponding connection forms θ^i_j. On the common domain of definition of the θ^A and ϕ^i's we have

$$e^A = B^A_j \phi^j.$$
for some smooth function B^α_j. According to (6)
\begin{equation}
B^\alpha_j = 0.
\end{equation}
In particular the volume element $d\tilde{V}$ of the metric $d\sigma^2$ can be expressed as
\begin{equation}
d\tilde{V} = \det(B^\alpha_j)dV
\end{equation}
where dV is the volume element of the metric ds^2; equivalently their ratio is given by the positive function
\begin{equation}
u = \det(B^\alpha_j).
\end{equation}
The immersion f will be said to be volume decreasing if at every point $p \in M$
\begin{equation}
u \leq 1.
\end{equation}

Volume increasing and volume preserving are defined analogously. Exterior differentiation of (6) and (8) and use of the structure equations of \mathbb{R}^n and (M, ds^2) gives:
\begin{equation}
dB^A_i - B^A_j \phi^j_i + B^B_i \phi^A_B = B^A_{ij} \phi^j
\end{equation}
for some smooth functions B^A_{ij} such that $B^A_{ij} = B^A_{ji}$. The B^A_{ij}'s are the coefficients of the (generalized) second fundamental tensor of the immersion $f: (M, ds^2) \to \mathbb{R}^n$, i.e.
\begin{equation}
\nabla df = B^A_{ij} \phi^j \otimes \phi^i \otimes e_A
\end{equation}
whose trace with respect to ds^2 gives the tension field τ of f, i.e.
\begin{equation}
\tau = B^A_{ii} e_A.
\end{equation}

We remark that if instead of considering $f: (M, ds^2) \to \mathbb{R}^n$ we consider $f: (M, d\sigma^2) \to \mathbb{R}^n$ the above procedure gives the second fundamental tensor and m times the mean curvature vector H.

We denote by Δ_{ds^2}, $\Delta_{d\sigma^2}$ the Laplace-Beltrami operators relative to ds^2 and $d\sigma^2$. We now claim
\begin{equation}
\frac{1}{2} \Delta_{ds^2} |f|^2 = \langle f, \tau \rangle + \|df\|^2
\end{equation}
and similarly
\begin{equation}
\frac{1}{2} \Delta_{d\sigma^2} |f|^2 = m \{ \langle f, H \rangle + 1 \}.
\end{equation}
In the above formulas $\langle \ , \ \rangle$ is the usual inner product in \mathbb{R}^n and $||$ its corresponding norm, while $\| \|$ is the Hilbert-Schmidt norm of df; that is
\begin{equation}
\|df\|^2 = \sum_{i,A} (B^A_i)^2.
\end{equation}
The proof of (16) is a standard computation. Indeed by (6) and (8) we have
\begin{equation}
d|f|^2 = 2B^A_i \langle f, e_A \rangle \phi^i
\end{equation}
and by (5), (6), (8), (13)
\begin{equation}
d(2B^A_i \langle f, e_A \rangle) - 2B^A_j \langle f, e_A \rangle \phi^j_i = 2\langle f, e_A \rangle B^A_{ij} + B^A_i B^A_j \phi^j.
\end{equation}
By definition $\Delta_{ds^2}|f|^2$ is the trace of the coefficients appearing in the right-hand side of (19), hence by (15) and (18) we obtain (16).

In case M is compact, integration of (16) gives

$$E(f) = -\frac{1}{2} \int_M \langle f, \tau \rangle \, dV$$

where $E(f)$ is the energy of f. If f is an isometry (20) generalizes a formula of Minkowski on convex bodies.

3. Proof of the theorem. We just prove sufficiency. Since M is compact, integrating (16), (17) and using (10), (11) we obtain

$$\int_M \{\langle f, \tau - umH \rangle + \|df\|^2 - um\} \, dV = 0.$$

We now let ds^2 and $d\sigma^2$ play the role of G and H in the introduction. Our considerations will be pointwise. The matrix of ds^2 with respect to the basis ϕ^i is of course the identity (δ_{ij}), while from (7) and (8) we get

$$d\sigma^2 = B^k_i B^k_j \phi^i \phi^j$$

showing that the matrix of $d\sigma^2$ with respect to the same basis is $(B^k_i B^k_j)$. In particular from (11) its determinant is u^2. A simple computation shows that in this case $P = \frac{1}{m} \|df\|^2$. From (1) we therefore obtain

$$\|df\|^2 \geq mu^{2/m},$$

and hence

$$\|df\|^2 - um \geq m(u^{2/m} - u).$$

On the other hand by (i) and (21) we get $\int(\|df\|^2 - um) \leq 0$. Thus, if

$$u^{2/m} - u \geq 0,$$

combining with (23) gives

$$u = u^{2/m}.$$

We deduce that equality holds in (22), hence

$$B^k_i B^k_j = \rho \delta_{ij};$$

that is, the map f is conformal. Now in case $m \geq 3$ (24) follows from (j); moreover from (25) we deduce $u = 1$ which implies $\rho = 1$ in (26), i.e. f is an isometry. The remaining two cases are handled similarly.

REFERENCES

DEPARTMENT OF MATHEMATICAL SCIENCES, UNIVERSITY OF DURHAM, DURHAM, ENGLAND

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS, 34100 TRIESTE, ITALY