Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A note on hyper-Hermitian four-manifolds


Author: Charles P. Boyer
Journal: Proc. Amer. Math. Soc. 102 (1988), 157-164
MSC: Primary 53C55,; Secondary 32C10,32L25,53C15,53C25
DOI: https://doi.org/10.1090/S0002-9939-1988-0915736-8
MathSciNet review: 915736
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that the only hyperhermitian four-manifolds are, up to conformal equivalence, tori and $ {K^3}$ surfaces with their standard hyperKähler structures and certain conformally flat Hopf surfaces.


References [Enhancements On Off] (What's this?)

  • [1] M. F. Atiyah, N. J. Hitchin and I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), 425-461. MR 506229 (80d:53023)
  • [2] W. Barth, C. Peters and A. Van de Ven, Compact complex surfaces, Springer-Verlag, New York, 1984. MR 749574 (86c:32026)
  • [3] A. Blanchard, Sur les varietes analytiques complexes, Ann. Sci. École Norm. Sup. 73 (1956), 157-202. MR 0087184 (19:316e)
  • [4] C. P. Boyer, Conformal duality and compact complex surfaces, Math. Ann. 274 (1986), 517-526. MR 842629 (87i:53068)
  • [5] E. Calabi, Isometric families of Kähler structures, The Chern Symposium 1979, Springer-Verlag, New York, 1980, pp. 23-39. MR 609556 (83g:53044)
  • [6] -, Metriques Kählériennes et fibres holomorphes, Ann. Sci. École Norm. Sup. 12 (1979), 269-294. MR 543218 (83m:32033)
  • [7] B. A. Dubrovin, A. T. Fomenko and S. P. Novikov, Modern geometry, vol. 1, Springer-Verlag, New York, 1984. MR 766739 (86c:55001)
  • [8] P. Gauduchon, Le théorème de l'excentricité nulle, C. R. Acad. Sci. Paris Ser. I Math. 285 (1977), 387-390. MR 0470920 (57:10664)
  • [9] N. J. Hitchin, Kählerian twistor spaces, Proc. London Math. Soc. (3) 43 (1981), 133-150. MR 623721 (84b:32014)
  • [10] M. Kato, Compact differentiable $ 4$-folds with quaternionic structures, Math. Ann. 248 (1980), 79-86. MR 569412 (81h:53037)
  • [11] -, Topology of Hopf surfaces, J. Math. Soc. Japan 27 (1975), 222-238. MR 0402128 (53:5949)
  • [12] K. Kodaira, On the structure of compact complex analytic surfaces. II, III, Amer. J. Math. 88 (1966), 682-721; 90 (1968), 55-83. MR 0205280 (34:5112)
  • [13] A. Lichnerowicz, Spineurs harmoniques, C. R. Acad. Sci. Paris Ser. A-B 257 (1968), 7-9. MR 0156292 (27:6218)
  • [14] S. Salamon, Quaternionic Kähler manifolds, Invent. Math. 67 (1982), 143-171. MR 664330 (83k:53054)
  • [15] A. Sommese, Quaternionic manifolds, Math. Ann. 212 (1975), 191-214. MR 0425827 (54:13778)
  • [16] I. Vaisman, Some curvature properties of complex surfaces, Ann. Mat. Pura Appl. 32 (1982), 1-18. MR 696036 (84i:53064)
  • [17] -, Generalized Hopf manifolds, Geom. Dedicata 13 (1982), 231-255. MR 690671 (84g:53096)
  • [18] J. A. Wolf, Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech. 14 (1965), 1033-1047. MR 0185554 (32:3020)
  • [19] K. Yano and S. Bochner, Curvature and Betti numbers, Princeton Univ. Press, Princeton, N. J., 1953. MR 0062505 (15:989f)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C55,, 32C10,32L25,53C15,53C25

Retrieve articles in all journals with MSC: 53C55,, 32C10,32L25,53C15,53C25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0915736-8
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society