Extremal problems for Lorentz classes of nonnegative polynomials in metric with Jacobi weight

Authors:
Gradimir V. Milovanović and Miodrag S. Petković

Journal:
Proc. Amer. Math. Soc. **102** (1988), 283-289

MSC:
Primary 26C05,; Secondary 26D10

MathSciNet review:
920987

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be the Lorentz class of nonnegative polynomials on . Extremal problems of Markov type, in norm with Jacobi weight, on the set or on its subset, are investigated.

**[1]**P. Erdös,*On extremal properties of the derivatives of polynomials*, Ann. of Math. (2)**41**(1940), 310–313. MR**0001945****[2]**P. Erdős and A. K. Varma,*An extremum problem concerning algebraic polynomials*, Acta Math. Hungar.**47**(1986), no. 1-2, 137–143. MR**836404**, 10.1007/BF01949134**[3]**G. G. Lorentz,*The degree of approximation by polynomials with positive coefficients*, Math. Ann.**151**(1963), 239–251. MR**0155135****[4]**G. G. Lorentz,*Derivatives of polynomials with positive coefficients*, J. Approximation Theory**1**(1968), 1–4. MR**0231957****[5]**A. A. Markov,*On a problem of D. I. Mendeleev*, Zap. Imp. Akad. Nauk, St. Petersburg**62**(1889), 1-4. (Russian)**[6]**Gradimir V. Milovanović,*An extremal problem for polynomials with nonnegative coefficients*, Proc. Amer. Math. Soc.**94**(1985), no. 3, 423–426. MR**787886**, 10.1090/S0002-9939-1985-0787886-8**[7]**John T. Scheick,*Inequalities for derivatives of polynomials of special type*, J. Approximation Theory**6**(1972), 354–358. Collection of articles dedicated to J. L. Walsh on his 75th birthday, VIII. MR**0342909****[8]**Gábor Szegö,*On some problems of approximations*, Magyar Tud. Akad. Mat. Kutató Int. Közl.**9**(1964), 3–9 (English, with Russian summary). MR**0173895****[9]**A. K. Varma,*An analogue of some inequalities of P. Turán concerning algebraic polynomials having all zeros inside [-1,+1]*, Proc. Amer. Math. Soc.**55**(1976), no. 2, 305–309. MR**0396878**, 10.1090/S0002-9939-1976-0396878-7**[10]**A. K. Varma,*An analogue of some inequalities of P. Turán concerning algebraic polynomials having all zeros inside [-1,+1]. II*, Proc. Amer. Math. Soc.**69**(1978), no. 1, 25–33. MR**0473124**, 10.1090/S0002-9939-1978-0473124-9**[11]**A. K. Varma,*Some inequalities of algebraic polynomials having real zeros*, Proc. Amer. Math. Soc.**75**(1979), no. 2, 243–250. MR**532144**, 10.1090/S0002-9939-1979-0532144-7**[12]**A. K. Varma,*Derivatives of polynomials with positive coefficients*, Proc. Amer. Math. Soc.**83**(1981), no. 1, 107–112. MR**619993**, 10.1090/S0002-9939-1981-0619993-0**[13]**A. K. Varma,*Some inequalities of algebraic polynomials having all zeros inside [-1,1]*, Proc. Amer. Math. Soc.**88**(1983), no. 2, 227–233. MR**695248**, 10.1090/S0002-9939-1983-0695248-5

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
26C05,,
26D10

Retrieve articles in all journals with MSC: 26C05,, 26D10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0920987-2

Article copyright:
© Copyright 1988
American Mathematical Society