Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Extremal problems for Lorentz classes of nonnegative polynomials in $ L^2$ metric with Jacobi weight


Authors: Gradimir V. Milovanović and Miodrag S. Petković
Journal: Proc. Amer. Math. Soc. 102 (1988), 283-289
MSC: Primary 26C05,; Secondary 26D10
DOI: https://doi.org/10.1090/S0002-9939-1988-0920987-2
MathSciNet review: 920987
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ {L_n}$ be the Lorentz class of nonnegative polynomials on $ [-1,1]$. Extremal problems of Markov type, in $ {L^2}$ norm with Jacobi weight, on the set $ {L_n}$ or on its subset, are investigated.


References [Enhancements On Off] (What's this?)

  • [1] P. Erdös, On extremal properties of the derivatives of polynomials, Ann. of Math. (2) 41 (1940), 310-313. MR 0001945 (1:323g)
  • [2] P. Erdös and A. K. Varma, An extremum problem concerning algebraic polynomials, Acta Math. Hungar. 47 (1986), 137-143. MR 836404 (87f:26017)
  • [3] G. G. Lorentz, The degree of approximation by polynomials with positive coefficients, Math. Ann. 151 (1963), 239-251. MR 0155135 (27:5075)
  • [4] -, Derivatives of polynomials with positive coefficients, J. Approx. Theory 1 (1968), 1-4. MR 0231957 (38:283)
  • [5] A. A. Markov, On a problem of D. I. Mendeleev, Zap. Imp. Akad. Nauk, St. Petersburg 62 (1889), 1-4. (Russian)
  • [6] G. V. Milovanovič, An extremal problem for polynomials with nonnegative coefficients, Proc. Amer. Math. Soc. 94 (1985), 423-426. MR 787886 (86g:26020)
  • [7] J. T. Scheick, Inequalities for derivatives of polynomials of special type, J. Approx. Theory 6 (1972), 354-358. MR 0342909 (49:7653)
  • [8] G. Szegö, Some problems of approximations, Magyar Tud. Akad. Mat. Kutato Int. Dozl. 2 (1964), 3-9. MR 0173895 (30:4102)
  • [9] A. K. Varma, An analogue of some inequalities of P. Turán concerning algebraic polynomials having all zeros inside $ [-1,1]$, Proc. Amer. Math. Soc. 55 (1976), 305-309. MR 0396878 (53:738)
  • [10] -, An analogue of some inequalities of P. Turán concerning algebraic polynomials having all zeros inside $ [-1,1]$. II, Proc. Amer. Math. Soc. 69 (1978), 25-33. MR 0473124 (57:12802)
  • [11] -, Some inequalities of algebraic polynomials having real zeros, Proc. Amer. Math. Soc. 75 (1979), 243-250. MR 532144 (80k:28019)
  • [12] -, Derivatives of polynomials with positive coefficients, Proc. Amer. Math. Soc. 83 (1981), 107-112. MR 619993 (82j:26014)
  • [13] -, Some inequalities of algebraic polynomials having all zeros inside $ [-1,1]$, Proc. Amer. Math. Soc. 88 (1983), 227-233. MR 695248 (84d:41024)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 26C05,, 26D10

Retrieve articles in all journals with MSC: 26C05,, 26D10


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0920987-2
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society