Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Fatou's lemma in infinite-dimensional spaces


Author: Nicholas C. Yannelis
Journal: Proc. Amer. Math. Soc. 102 (1988), 303-310
MSC: Primary 28A20,; Secondary 28B20,46B22,46G10,90A14
DOI: https://doi.org/10.1090/S0002-9939-1988-0920991-4
MathSciNet review: 920991
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Employing recent results of M. Ali Khan we provide an infinite-dimensional version of the Fatou Lemma, which includes as a special case the result of Khan and Majumdar [15].


References [Enhancements On Off] (What's this?)

  • [1] Z. Artstein, A note on Fatou's Lemma in several dimensions, J. Math. Econom. 6 (1979), 277-282. MR 564197 (82b:28008)
  • [2] R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1-12. MR 0185073 (32:2543)
  • [3] -, An elementary proof that integration preserves upper-semicontinuity, J. Math. Econom. 3 (1976), 15-18. MR 0403571 (53:7382)
  • [4] J. Diestel, Remarks on weak compactness in $ {L_1}(\mu ,X)$, Glasgow Math. J. 18 (1977), 87-91.
  • [5] J. Diestel and J. Uhl, Vector measures Math. Surveys, no. 15, Amer. Math. Soc., Providence, R.I., 1977. MR 0453964 (56:12216)
  • [6] N. Dinculeanu, Linear opertions on $ {L_p}$-spaces, Vector and Operator Valued Measures and Applications (D. Tucker and H. Maynard, eds.), Academic Press, New York, 1973. MR 0341066 (49:5816)
  • [7] L. Dsosu and C. Shaozhong, On fixed point theorems for random set-valued maps, Nonlinear Anal. 7 (1983), 309-323. MR 693448 (84m:60078)
  • [8] N. Dunford and J. T. Schwartz, Linear operators, Part I, Interscience, New York, 1958.
  • [9] W. Hildenbrand, Core and equilibria of a large economy, Princeton Univ. Press, Princeton, N.J., 1974. MR 0389160 (52:9991)
  • [10] W. Hildenbrand and J. Mertens, On Fatou's Lemma in several dimensions, Z. Wahrsch. Verw. Gebiete 17, Springer, 1971, pp. 151-155. MR 0277681 (43:3414)
  • [11] C. J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53-72. MR 0367142 (51:3384)
  • [12] M. Ali Khan, Equilibrium points of nonatomic games over a Banach space, Trans. Amer. Math. Soc. 29 (1986), 737-749. MR 816322 (87f:90035)
  • [13] -, On the integration of set-valued mappings in a nonreflexive Banach space. II, Simon Stevin 59 (1985), 257-267. MR 833482 (87g:28009)
  • [14] -, An alternative proof of Diestel's Theorem, Glasgow Math. J. 25 (1984), 45-46.
  • [15] M. Ali Khan and M. Majumdar, Weak sequential convergence in $ {L_1}(\mu ,X)$ and an approximate version of Fatou's Lemma, J. Math. Anal. Appl. 114 (1986), 569-573. MR 833611 (87m:28004)
  • [16] N. S. Papageorgiou, Representation of set valued operators, Trans. Amer. Math. Soc. 292 (1985), 557-572. MR 808737 (87c:47085)
  • [17] A. Rustichini, A counterexample to Fatou's Lemma in infinite dimensional spaces, Department of Math., Univ. of Minnesota, 1986.
  • [18] D. Schmeidler, Fatou's Lemma in several dimensions, Proc. Amer. Math. Soc. 24 (1970), 300-306. MR 0248316 (40:1568)
  • [19] J. Uhl, The range of a vector-valued measure, Proc. Amer. Math. Soc. 23 (1969), 158-163. MR 0264029 (41:8628)
  • [20] N. C. Yannelis, Equilibria in noncooperative models of competition, J. Econom. Theory 41 (1987), 96-111. MR 875986 (88h:90048)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 28A20,, 28B20,46B22,46G10,90A14

Retrieve articles in all journals with MSC: 28A20,, 28B20,46B22,46G10,90A14


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0920991-4
Keywords: Radon-Nikodým Property, Diestel's Theorem on weak compactness, Fatou's Lemma, approximate version of Lyapunov's Theorem, integral of a correspondence, integration preserves upper-semicontinuity, measurable selection
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society