On extreme points of families described by subordination

Author:
Rahman Younis

Journal:
Proc. Amer. Math. Soc. **102** (1988), 349-354

MSC:
Primary 30C80,; Secondary 30D55

DOI:
https://doi.org/10.1090/S0002-9939-1988-0920998-7

MathSciNet review:
920998

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let denote the set of analytic functions in subordinate to an analytic function . It is shown that if is a polynomial then the extreme points of the closed convex hull of . Also if and is a positive integer then the extreme points of the closed convex hull of . An analogue of Ryff's theorem, and other results related to subordination in Bergman spaces have been obtained.

**[1]**Yusuf Abu-Muhanna,*On extreme points of subordination families*, Proc. Amer. Math. Soc.**87**(1983), no. 3, 439–443. MR**684634**, https://doi.org/10.1090/S0002-9939-1983-0684634-5**[2]**D. A. Brannan, J. G. Clunie, and W. E. Kirwan,*On the coefficient problem for functions of bounded boundary rotation*, Ann. Acad. Sci. Fenn. Ser. A I**523**(1973), 18. MR**0338343****[3]**Peter L. Duren,*Univalent functions*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. MR**708494****[4]**D. J. Hallenbeck and T. H. MacGregor,*Subordination and extreme-point theory*, Pacific J. Math.**50**(1974), 455–468. MR**0361035****[5]**-,*Linear problems and convexity techniques in geometric function theory*, Pitman, 1984.**[6]**Thomas H. MacGregor,*Applications of extreme-point theory to univalent functions*, Michigan Math. J.**19**(1972), 361–376. MR**0311885****[7]**Kenneth Hoffman,*Banach spaces of analytic functions*, Prentice-Hall Series in Modern Analysis, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1962. MR**0133008****[8]**V. Kabaĭla,*Certain properties of the functions of class 𝐻′_{𝑝}, and interpolation problems*, Litovsk. Mat. Sb.**10**(1970), 471–490 (Russian, with Lithuanian and English summaries). MR**0274768****[9]**R. R. Phelps,*Extreme points in function algebras*, Duke Math. J.**32**(1965), 267–277. MR**0179644****[10]**John V. Ryff,*Subordinate 𝐻^{𝑝} functions*, Duke Math. J.**33**(1966), 347–354. MR**0192062****[11]**G. Šapiro,*Some observations concerning weighted polynomial approximation of holomorphic functions*, Mat. Sb. (N.S.)**73 (115)**(1967), 320–330 (Russian). MR**0217304**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
30C80,,
30D55

Retrieve articles in all journals with MSC: 30C80,, 30D55

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0920998-7

Keywords:
Analytic functions,
polynomials,
extreme points,
subordination,
Bergman spaces

Article copyright:
© Copyright 1988
American Mathematical Society