L^p MULTIPLIERS; A NEW PROOF OF AN OLD THEOREM

TOMAS P. SCHONBEK

(Communicated by Richard R. Goldberg)

ABSTRACT. New proofs are given for the following results of Hirschman and Wainger: Let $\psi \in C^\infty(\mathbb{R}^n)$ vanish in a neighborhood of the origin; $\psi(\xi) = 1$ for large ξ. Then

$$|\xi|^{-\beta} \psi(\xi) \exp(|\xi|\alpha)$$

is a multiplier in $L^p(\mathbb{R}^n)$ for $|1/p - 1/2| < \beta/na$; is not a multiplier in $L^p(\mathbb{R}^n)$ for $|1/p - 1/2| > \beta/na$.

1. Introduction. Let α, β be real numbers, $0 < \alpha < 1$, $\beta > 0$. Let $\psi \in C^\infty(\mathbb{R}^n)$ be 0 near the origin and 1 outside a compact subset of \mathbb{R}^n. For $f \in S(\mathbb{R}^n)$ we define $Tf \in S(\mathbb{R}^n)$ by

$$[Tf]\sim(\xi) = |\xi|^{-\beta} \psi(\xi) \exp(i|\xi|\alpha)f(\xi).$$

T is then a strongly singular convolution operator. The kernel of T was first studied by G. H. Hardy for $n = 1$ (cf. [2]). In [3], I. I. Hirschman develops the L^p-theory for operators of type T, concentrating in the periodic case. He proves, for $n = 1$ (see [3, Theorem 3c and remarks following it]),

THEOREM 1. Let $|1/p - 1/2| < \beta/na$. Then T extends to a bounded operator on L^p.

THEOREM 2. T does not extend to a bounded operator on L^p if $|1/p - 1/2| > \beta/na$.

The proof of Theorems 1, 2 for general dimension n is due to S. Wainger [7] and E. Stein [5]. In [1], C. Fefferman picks up the problem by looking at the behavior of T in the limit case $1/p - 1/2 = \beta/na$. He proves that in this case T is somewhat better than of weak type (p, p), thus proving Theorem 1 by the Marcinkiewicz interpolation theorem (cf., for example, [6]) and duality. His paper is also the first one to give information about behavior in the limit cases.

We will give new proofs of Theorems 1, 2 which we believe are simpler and more direct than the previous ones. In the sequel, $\| \cdot \|_p$ denotes the norm of $L^p(\mathbb{R}^n)$; $B(L^p)$ is the space of bounded operators on $L^p = L^p(\mathbb{R}^n)$; α, β, ψ are as described above; $0 < \delta < \rho$ are such that $\psi(\xi) = 0$ if $|\xi| \leq \delta$ and $\psi(\xi) = 1$ if $|\xi| \geq \rho$. All integrals without an explicit domain of integration are over all of \mathbb{R}^n.

Received by the editors November 3, 1986.

1980 Mathematics Subject Classification (1985 Revision). Primary 42B15, 42B10, 42B20, 42A45; Secondary 35P25.
2. Proof of Theorem 1. We will need the following lemma.

Lemma 1. For $\sigma > 0$ define k_σ on \mathbb{R}^n by

$$k_\sigma(x) = (2\pi)^{-n/2} \int e^{ix\cdot \xi} \psi(\xi) \exp((i-\sigma)|\xi|^\alpha) \, d\xi.$$

Then there exists a constant C such that

$$\|k_\sigma\|_1 \leq C\sigma^{-n/2} \exp\left(-\frac{1}{4} \delta^\alpha \sigma\right)$$

for all $\sigma > 0$.

We postpone the proof of Lemma 1 to §4. Let T be given by (1),

$$Tf(x) = (2\pi)^{-n/2} \int e^{ix\cdot \xi} \psi(\xi)|\xi|^{-\beta} \exp(i|\xi|^\alpha) \hat{f}(\xi) \, d\xi.$$

Noticing that

$$|\xi|^{-\beta} = \frac{1}{\Gamma(\beta/\alpha)} \int_0^\infty \sigma^{(\beta/\alpha)-1} \exp(-\sigma|\xi|^\alpha) \, d\sigma,$$

we can write

$$Tf(x) = \frac{1}{\Gamma(\beta/\alpha)} \int_0^\infty \sigma^{(\beta/\alpha)-1} (k_\sigma * f)(x) \, d\sigma,$$

hence

$$\|Tf\|_p \leq \frac{1}{\Gamma(\beta/\alpha)} \int_0^\infty \sigma^{(\beta/\alpha)-1} \|k_\sigma * f\|_p \, d\sigma$$

for all $p \in [1, \infty]$. By Lemma 1,

$$\|k_\sigma * f\|_1 \leq C\sigma^{-n/2} \exp\left(-\frac{1}{4} \delta^\alpha \sigma\right)\|f\|_1;$$

since $|k_\sigma(\xi)| \leq \|\psi\|_\infty \exp\left(-\frac{1}{4} \delta^\alpha \sigma\right),$

$$\|k_\sigma * f\|_2 \leq \|\psi\|_\infty \exp\left(-\frac{1}{4} \delta^\alpha \sigma\right)\|f\|_2.$$

By the Riesz-Thorin interpolation theorem (cf. [8]) (5) and (6) imply for $1 \leq p \leq 2,$

$$\|k_\sigma * f\|_p \leq C_1\sigma^{-\lambda} \exp(-\nu\delta^\alpha \sigma)\|f\|_p$$

for $\sigma > 0$, where C_1 depends only on the C of (5) and $\|\psi\|_\infty$, $\lambda = n((1/p) - (1/2))$ and $\nu = (1/p - 1/2)/2 + 2(1 - 1/p) > 0$. Using (7) in (4), we see $T \in B(L^p)$ if

$$\int_0^\infty \sigma^{(\beta/\alpha)-1-\lambda} \exp(-\nu\delta^\alpha \sigma) \, d\sigma < \infty,$$

which happens if (and only if) $\lambda < \beta/\alpha$; i.e., $1/p - 1/2 < \beta/n\alpha$. This proves Theorem 1 if $1 < p < 2$; the case $p \geq 2$ follows by duality.

3. Proof of Theorem 2. We use the following result from stationary phase analysis.
LEMMA 2. Let $P \in C^\infty(\mathbb{R}^n)$, $g \in C^\infty_c(\mathbb{R}^n)$ and assume $\det((\partial^2/\partial \xi_i \partial \xi_j)P(\xi)) \neq 0$ for all $\xi \in \text{supp } g$. Then there exists $C = C(g)$ such that

$$\left| \int \exp(ix \cdot \xi - itP(\xi))g(\xi) \, d\xi \right| \leq Ct^{-n/2}$$

for all $t > 0$.

For a proof of Lemma 2, see (for example) [4, p. 41].

For $t > 0$, we define

$$(8) \quad T(t)f(x) = (2\pi)^{-n/2} \int \exp(ix \cdot \xi + it|\xi|^\alpha)|\xi|^{-\beta} \psi(t^{1/\alpha} \xi) \hat{f}(\xi) \, d\xi$$

so that $T = T(1)$. Let E be the set of all $f \in (\mathbb{R}^n)$ such that $\hat{f} \in C^\infty_0$ and $\text{supp } f \subseteq \{ \xi \mid |\xi| > \rho \}$. Noticing $\psi(t^{1/\alpha} \xi)\hat{f}(\xi) = \hat{f}(\xi)$ for $f \in E$, $t \geq 1$, all ξ; we can apply Lemma 2 with $P(\xi) = |\xi|^{\alpha}$ for $|\xi| \geq \rho$; $g(\xi) = |\xi|^{-\beta} \hat{f}(\xi)$. The determinant in the lemma evaluates to $(-\alpha|\xi|^{\alpha-2})(1-\alpha) \neq 0$ for $0 < \alpha < 1$, $|\xi| \geq \rho$. Thus

$$(9) \quad \|T(t)f\|_\infty \leq C(f)t^{-n/2}$$

for $f \in F$, $t \geq 1$. Assume now $1 \leq p \leq 2$ and $T \in B(L^p)$, of norm C_p. It is then easy to see $T(t) \in B(L^p)$ for all $t > 0$ and

$$(10) \quad \|T(t)f\|_p \leq C_p \|f\|_p$$

for all $f \in L^p$. From (10) and (9) we get at once

$$(11) \quad \|T(t)f\|_2 \leq Kt^\lambda$$

by a trivial interpolation, K depending on f and $\lambda = (p/2\alpha)[\beta/(n\alpha) - (1/p - 1/2)]$, $f \in E$. Since $\|T(t)f\|_2 = \|\hat{f}/|\xi|^{\alpha}\|_2$ for $t \geq 1$, i.e., is independent of t for $t \geq 1$ and $f \in E \setminus \{0\}$, (11) can only hold if $\lambda \geq 0$, i.e., $1/p - 1/2 \leq \beta/na$. This proves Theorem 2 in case $1 \leq p \leq 2$; the case $p \geq 2$ follows by duality.

4. Proof of Lemma 1. For $r = 0, 1, 2, \ldots$, let $k^{(r)}(\sigma) = (\partial/\partial \sigma)^r k_\sigma$; thus

$$[k^{(r)}(\sigma)]^{-}(\xi) = (-1)^r \psi(\xi)|\xi|^{r\alpha} \exp((i - \sigma)|\xi|^{\alpha}).$$

If $\gamma = (\gamma_1, \ldots, \gamma_n)$ is a multi-index of length m, then

$$(12) \quad |D_\xi^\gamma k^{(r)}(\sigma)(\xi)| \leq C[\chi_S(\xi) \exp(-\frac{1}{2}\delta^\alpha \sigma) + |\xi|^{r\alpha-m(1-\alpha)} \exp(-\frac{1}{2}|\xi|^{\alpha}\sigma)] \exp(-\frac{1}{4}|\xi|^{\alpha}\sigma)$$

for $|\xi| \geq \delta$, $\sigma > 0$, where χ_S is the characteristic function of $S = \{\xi \mid \delta \leq |\xi| \leq \rho \}$ and C depends on ψ, m, r. The proof is straightforward, though tedious. Terms in which ψ is differentiated can be estimated by const $\chi_S \exp(-|\xi|^{\alpha}\sigma)(1 + \sigma)^m$; in the other terms we can estimate (for $|\xi| \geq \delta$) all powers of ξ by the highest appearing power, namely $|\xi|^{r\alpha-m(1-\alpha)}$. We get rid of all positive powers of $1 + \sigma$ by using part of $\exp(-|\xi|^{\alpha}\sigma) \leq \exp(-\sigma^{\alpha}\sigma)$ for that purpose. Another part of this factor gets factored out at the end. From (12) we get

$$(13) \quad \|x|^m k^{(r)}(\sigma)\|_2 \leq C \left[\exp\left(-\frac{1}{2}\sigma^{\alpha}\sigma\right) + \sigma^{\lambda-(n/2\alpha)} \left(\int g(\xi) \, d\xi \right)^{1/2} \right] \exp\left(-\frac{1}{4}\sigma^{\alpha}\sigma\right)$$
where
\[g(\xi) = |\xi|^{-2\lambda} \exp(-|\xi|^\lambda), \quad \lambda = \frac{m(1 - \alpha)}{\alpha} - r. \]

We see \(g \in L^1(\mathbb{R}^n) \) iff \(2\lambda \alpha < n \), i.e.,
\begin{equation}
(14) \quad m < \frac{n + 2r\alpha}{2(1 - \alpha)}.
\end{equation}

Thus (13) implies
\begin{equation}
(15) \quad \| \, |x|^m k_{\sigma}^{(r)} \, \|_2 \leq C\sigma^{m(1-\alpha)/\alpha-(r+n/2\alpha)} \exp(-\frac{1}{4} \delta^\alpha \sigma)
\end{equation}
for all integers \(r, m \) such that (14) holds, \(\sigma > 0 \). In particular, (15) holds for \(m = 0, \) all \(r = 0, 1, \ldots \). Now choose and fix an integer \(m > n/2 \); then fix an integer \(r \geq 0 \) such that (14) holds. Using
\[\|h\|_1 \leq \text{const} R^{n/2}(\|h\|_2 + R^{-m}\|\, |x|^m h \, \|_2), \]
valid for all \(R > 0 \), we get from (15) with \(h = k_{\sigma}^{(r)}, \) \(R = \sigma^{(1-\alpha)/\alpha}, \)
\[\|k_{\sigma}^{(r)}\|_1 \leq C\sigma^{-(n/2)-r} \exp(-\frac{1}{4} \delta^\alpha \sigma) \]
for \(\sigma > 0 \). Integrating \(r \) times with respect to \(\sigma \), from \(\sigma \) to \(\infty \), we obtain (3).

Acknowledgment. The author wishes to thank Professor Josefina Alvarez Alonso for her help with this paper.

References

Department of Mathematics, Florida Atlantic University, Boca Raton, Florida 33431