-multipliers: a new proof of an old theorem

Author:
Tomas P. Schonbek

Journal:
Proc. Amer. Math. Soc. **102** (1988), 361-364

MSC:
Primary 42B15,; Secondary 46E30,47B38

DOI:
https://doi.org/10.1090/S0002-9939-1988-0921000-3

MathSciNet review:
921000

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: New proofs are given for the following results of Hirschman and Wainger: Let vanish in a neighborhood of the origin; for large . Then

**[1]**Charles Fefferman,*Inequalities for strongly singular convolution operators*, Acta Math.**124**(1970), 9–36. MR**0257819**, https://doi.org/10.1007/BF02394567**[2]**G. H. Hardy,*A theorem concerning Taylor's series*, Quart. J. Pure Appl. Math.**44**(1913), 147-160.**[3]**I. I. Hirschman Jr.,*On multiplier transformations*, Duke Math. J**26**(1959), 221–242. MR**0104973****[4]**Michael Reed and Barry Simon,*Methods of modern mathematical physics. III*, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. Scattering theory. MR**529429****[5]**E. M. Stein,*Singular integrals, harmonic functions, and differentiability properties of functions of several variables*, Singular integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966), Amer. Math. Soc., Providence, R.I., 1967, pp. 316–335. MR**0482394****[6]**Elias M. Stein,*Singular integrals and differentiability properties of functions*, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR**0290095****[7]**Stephen Wainger,*Special trigonometric series in 𝑘-dimensions*, Mem. Amer. Math. Soc. No.**59**(1965), 102. MR**0182838****[8]**A. Zygmund,*Trigonometric series. 2nd ed. Vols. I, II*, Cambridge University Press, New York, 1959. MR**0107776**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
42B15,,
46E30,47B38

Retrieve articles in all journals with MSC: 42B15,, 46E30,47B38

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0921000-3

Article copyright:
© Copyright 1988
American Mathematical Society