Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

$ L^p$-multipliers: a new proof of an old theorem


Author: Tomas P. Schonbek
Journal: Proc. Amer. Math. Soc. 102 (1988), 361-364
MSC: Primary 42B15,; Secondary 46E30,47B38
MathSciNet review: 921000
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: New proofs are given for the following results of Hirschman and Wainger: Let $ \psi \in {C^\infty }({\mathbb{R}^n})$ vanish in a neighborhood of the origin; $ \psi (\xi ) = 1$ for large $ \xi $. Then

$\displaystyle \vert\xi {\vert^{ - \beta }}\psi (\xi )\exp (i\vert\xi {\vert^\alpha })$

is a multiplier in $ {L^p}({\mathbb{R}^n})$ for $ \vert 1/p - 1/2\vert < \beta /n\alpha $; is not a multiplier in $ {L^p}\left( {{\mathbb{R}^n}} \right)$ for $ \vert 1/p - 1/2\vert > \beta /n\alpha $.

References [Enhancements On Off] (What's this?)

  • [1] Charles Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9–36. MR 0257819
  • [2] G. H. Hardy, A theorem concerning Taylor's series, Quart. J. Pure Appl. Math. 44 (1913), 147-160.
  • [3] I. I. Hirschman Jr., On multiplier transformations, Duke Math. J 26 (1959), 221–242. MR 0104973
  • [4] Michael Reed and Barry Simon, Methods of modern mathematical physics. III, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1979. Scattering theory. MR 529429
  • [5] E. M. Stein, Singular integrals, harmonic functions, and differentiability properties of functions of several variables, Singular integrals (Proc. Sympos. Pure Math., Chicago, Ill., 1966), Amer. Math. Soc., Providence, R.I., 1967, pp. 316–335. MR 0482394
  • [6] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
  • [7] Stephen Wainger, Special trigonometric series in 𝑘-dimensions, Mem. Amer. Math. Soc. No. 59 (1965), 102. MR 0182838
  • [8] A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 42B15,, 46E30,47B38

Retrieve articles in all journals with MSC: 42B15,, 46E30,47B38


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0921000-3
Article copyright: © Copyright 1988 American Mathematical Society