Completeness theorem for singular biprobability models

Author:
Miodrag Rašković

Journal:
Proc. Amer. Math. Soc. **102** (1988), 389-392

MSC:
Primary 03C70,; Secondary 03C75,03H05

DOI:
https://doi.org/10.1090/S0002-9939-1988-0921005-2

MathSciNet review:
921005

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The aim of the paper is to prove the completeness theorem for singular biprobability models. This also solves Keisler's Problem 5.4 in the singular case (see [**3**]). The case of absolute continuity is considered in [**6**].

**[1]**D. Hoover,*Probability logic*, Ann. Math. Logic**14**(1978), 287-313. MR**510234 (80b:03044)****[2]**H. J. Keisler,*Hyperfinite model theory*, Logic Colloquium '76, edited by J. M. E. Hyland and R. O. Gandy, North-Holland, 1977, pp. 5-110. MR**0491155 (58:10421)****[3]**-,*Probability quantifiers*, Chapter 14 in Model Theoretic Logics, edited by J. Barwise and S. Feferman, Springer-Verlag, 1985, pp. 509-556. MR**819545****[4]**J. Los and E. Marczewski,*Extension of measures*, Fund. Math.**36**(1949), 267-276. MR**0035327 (11:717h)****[5]**K. P. S. Rao Bhaskara and M. Rao Bhaskara,*Theory of charges*, Academic Press, 1983. MR**751777 (86f:28006)****[6]**M. D. Rašković,*Completeness theorem for biprobability models*, J. Symbolic Logic**51**(1986), 586-590. MR**853841 (87j:03047)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
03C70,,
03C75,03H05

Retrieve articles in all journals with MSC: 03C70,, 03C75,03H05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0921005-2

Article copyright:
© Copyright 1988
American Mathematical Society