EXPANSION OF DISCRETE
AND CLOSURE-PRESERVING FAMILIES
TAKEMI MIZOKAMI
(Communicated by Dennis Burke)

ABSTRACT. In this paper, we define the classes of d-IP-expandable spaces and IP-expandable spaces, and study their properties and relations with orthocompact spaces and nonarchimedean quasi-metrizable spaces.

1. Introduction. Following [1], a space X is called CP-expandable if for each closure-preserving family \(\mathcal{F} = \{ F_\lambda : \lambda \in \Lambda \} \) of closed subsets of X and for each family \(\mathcal{U} = \{ U_\lambda : \lambda \in \Lambda \} \) of open subsets of X such that \(F_\lambda \subseteq U_\lambda \) for each \(\lambda \), there exists a closure-preserving family \(\mathcal{V} = \{ V_\lambda : \lambda \in \Lambda \} \) of open subsets of X such that \(F_\lambda \subseteq V_\lambda \subseteq \overline{V_\lambda} \subseteq U_\lambda \) for each \(\lambda \). In this paper, we introduce the classes of IP-expandable spaces and d-IP-expandable spaces by replacing "closure-preserving" with other conditions. Our main purpose is to study the properties of these classes and the relations with orthocompact spaces and nonarchimedean quasi-metrizable spaces.

All spaces are assumed to be \(T_1 \) topological spaces and \(\mathbb{N} \) always denotes the set of natural numbers.

2. D-IP-expandability and IP-expandability. We state the definitions of d-IP-expandability and IP-expandability.

DEFINITION 2.1. We call a space X d-IP-expandable if for a discrete family \(\mathcal{F} = \{ F_\lambda : \lambda \in \Lambda \} \) of closed subsets of X and a family \(\mathcal{U} = \{ U_\lambda : \lambda \in \Lambda \} \) of open subsets of X such that \(F_\lambda \subseteq U_\lambda \) for each \(\lambda \), there exists an interior-preserving family \(\mathcal{V} = \{ V_\lambda : \lambda \in \Lambda \} \) of open subsets of X such that \(F_\lambda \subseteq V_\lambda \subseteq U_\lambda \) for each \(\lambda \).

DEFINITION 2.2. We call a space X IP-expandable if for a closure-preserving family \(\mathcal{F} = \{ F_\lambda : \lambda \in \Lambda \} \) of closed subsets of X and a family \(\mathcal{U} = \{ U_\lambda : \lambda \in \Lambda \} \) of open subsets of X such that \(F_\lambda \subseteq U_\lambda \) for each \(\lambda \), there exists a family \(\mathcal{V} = \{ V_\lambda : \lambda \in \Lambda \} \) of open subsets of X such that \(F_\lambda \subseteq V_\lambda \subseteq U_\lambda \) for each \(\lambda \) and \(\{ V_\lambda : \lambda \in \Lambda \} \) is interior-preserving in X.

In either case, we call \(\mathcal{V} \) the IP-expansion of \(\mathcal{F} \) with respect to \(\mathcal{U} \) in X. A space X is called \((\sigma-) \)orthocompact if every open cover of X has a \((\sigma-) \)interior-preserving open refinement.

PROPOSITION 2.3. If a space X is collectionwise normal, then X is d-IP-expandable.

PROPOSITION 2.4. If a space X is orthocompact, then X is d-IP-expandable.

Received by the editors December 26, 1985 and, in revised form, August 25, 1986.
1980 Mathematics Subject Classification (1985 Revision). Primary 54D20.
Key words and phrases. Interior-preserving, orthocompact, nonarchimedean quasi-metrizable, d-IP-expandable.

©1988 American Mathematical Society
0002-9939/88 $1.00 + $.25 per page

402
Proof. Let $\mathcal{F} = \{F_\lambda: \lambda \in \Lambda\}$ and $\mathcal{U} = \{U_\lambda: \lambda \in \Lambda\}$ be the same pair of families as in Definition 2.1. Assume $F_\lambda \cap U_{\lambda'} = \emptyset$ if $\lambda \neq \lambda'$. Since X is orthocompact, there exists an interior-preserving open refinement \mathcal{W} of an open cover $\mathcal{U} \cup \{X - \bigcup \mathcal{F}\}$. Setting $V_\lambda = S(F_\lambda, \mathcal{W})$ for each λ, we have the IP-expansion $\mathcal{V} = \{V_\lambda: \lambda \in \Lambda\}$ of \mathcal{F} with respect to \mathcal{U}.

In [5], Michael constructed a normal, noncollectionwise normal, metacompact space X. By Proposition 2.4, X is d-IP-expandable. Thus, the converse of Proposition 2.3 is not true. Also, Scott constructed a countably compact space X which is not orthocompact [8, Example 4.5]. Obviously, X is d-IP-expandable. Hence the converse of Proposition 2.4 is also not true. The following gives a simple sufficient condition for a d-IP-expandable space to be orthocompact.

Theorem 2.5. If a space X is submetacompact and d-IP-expandable, then X is orthocompact.

Proof. Let \mathcal{U} be an open cover of X. Since X is submetacompact, that is θ-refinable, by [11] there exists an open refinement $\bigcup_{n=1}^\infty \mathcal{U}_n$ of \mathcal{U} and a closed cover $\{F_n: n \in \mathbb{N}\}$ of X such that for each n, \mathcal{U}_n covers F_n and \mathcal{U}_n is point-finite at each point of F_n. For each $n, k \in \mathbb{N}$, set the closed set by

$$E_{nk} = \{x \in F_n: \text{ord}(x, \mathcal{U}_n) \leq k\},$$

where $\text{ord}(x, \mathcal{U}_n) = |\{U \in \mathcal{U}_n: x \in U\}|$. Then $\{E_{nk}: n, k \in \mathbb{N}\}$ satisfies the following conditions

1. For each n, k, $\bigcup_{k=1}^\infty E_{nk} = F_n$ and $E_{nk} \subset E_{nk+1}$.
2. For each n, E_{n1} is the union of a discrete family \mathcal{E}_{n1} of closed subsets of F_n such that each $E \in \mathcal{E}_{n1}$ is contained in some $U(E) \in \mathcal{U}_n$.
3. For each n and each $k \geq 2$, if T is a closed subset of E_{nk} such that $T \cap E_{nk-1} = \emptyset$, then T is the union of a discrete family $\mathcal{E}(T)$ of closed subsets of E_{nk} such that each $E \in \mathcal{E}(T)$ is contained in some $U(E) \in \mathcal{U}_n$.

Let $n \in \mathbb{N}$ be fixed for a while. Since X is d-IP-expandable, there exists the IP-expansion \mathcal{V}_n of \mathcal{E}_{n1} with respect to $\{U(E): E \in \mathcal{E}_{n1}\}$. By (3) and by d-IP-expandability of X again, there exists the IP-expansion \mathcal{V}_{n2} of $\mathcal{E}(E_{n2} - \bigcup \mathcal{V}_n)$ with respect to $\{U(E): E \in \mathcal{E}(E_{n2} - \bigcup \mathcal{V}_n)\}$. Repeating this process, we can get a sequence $\{V_{nk}: k \in \mathbb{N}\}$ of IP-expansions. It is easy to see that $\bigcup \{V_{nk}: n, k \in \mathbb{N}\}$ is a σ-interior-preserving open refinement of \mathcal{U}. By [3], X is countably metacompact. Let $\{V_{nk}: n, k \in \mathbb{N}\}$ be a point-finite open refinement of $\{\bigcup V_{nk}: n, k \in \mathbb{N}\}$ such that $V_{nk} \subset \bigcup V_{nk}$ for each n, k. It is easy to see that

$$\bigcup \{V_{nk} \cap V: V \in V_{nk}\}: n, k \in \mathbb{N}$$

is an interior-preserving open refinement of \mathcal{U}.

The converse of Theorem 2.5 is not true, because there is a noncountably metacompact orthocompact space [8, Example 4.2]. A quasi-metric d on a set X with the property that $d(x, z) \leq \max\{d(x, y), d(y, z)\}$, for each $x, y, z \in X$, is called nonarchimedean, and the space (X, d) is called nonarchimedean quasi-metrizable. As is well known, nonarchimedean quasi-metrizable spaces are characterized as spaces that have a σ-interior-preserving base.
COROLLARY 2.6. Let X be a developable space. Then X is d-IP-expandable if and only if X is nonarchimedean quasi-metrizable.

PROOF. Both if and only if parts follow easily from Theorem 2.5 and [4, Theorem 14].

It follows directly from the preceding result that every nonarchimedean quasi-metrizable space is σ-orthocompact, but the converse is not true [4, p. 116]. On the other hand, Sorgenfrey lines show that nonarchimedean quasi-metrizable spaces need not be developable. The following is not known:

QUESTION 2.7. If a space X is developable and quasi-metrizable, then is X d-IP-expandable?

This is equivalent to the well-known problem, due to Junnila, whether every developable quasi-metrizable space is nonarchimedean quasi-metrizable.

THEOREM 2.8. For a space X, the following are equivalent:

(1) X is an orthocompact developable space.

(2) X has a development $\{U_n : n \in \mathbb{N}\}$ such that each U_n is interior-preserving in X.

(3) X is a d-IP-expandable developable space.

(4) X is a semistratifiable, nonarchimedean quasi-metrizable space.

PROOF. (1)\rightarrow(2) is trivial. (2)\rightarrow(3): Under (2), X is a submetacompact σ-orthocompact space. Then X is orthocompact. By Proposition 2.4, X is d-IP-expandable. (3)\rightarrow(4) follows from Corollary 2.6. (4)\rightarrow(1): Under (4), X is a submetacompact σ-orthocompact space, and therefore X is orthocompact. Since a semistratifiable γ-space is developable [7], X is developable.

COROLLARY 2.9. If for each $n \in \mathbb{N}$, X_n is an orthocompact developable space, then so is $\prod_{n=1}^{\infty} X_n$.

PROOF. This follows from the fact that semistratifiability and having a σ-interior-preserving base are countably productive properties.

A space X is said to have property (P) provided that for a closed G_δ-set F of X, there exists a family \mathcal{U} of open subsets of X satisfying the following:

(1) $\mathcal{U}/(X - F)$ is interior-preserving in $X - F$.

(2) For each open subset V of X, there exists $U \in \mathcal{U}$ such that $V \cap F = U \cap F \subset U \subset V$.

THEOREM 2.10. If a space X is nonarchimedean quasi-metrizable, then X has the property (P).

PROOF. Write $F = \bigcap_{n=1}^{\infty} O_n$, where for each n, O_n is open in X and $O_{n+1} \subset O_n$. Let $\bigcup_{n=1}^{\infty} B_n$ be a base for X, where for each n, $B_n \subset B_{n+1}$ and B_n is interior-preserving in X. Let $\{B(\lambda) : \lambda \in \Lambda\}$ be the totality of subfamilies of $\bigcup_{n=1}^{\infty} (B_n/O_n)$. Then it is easy to see that $\mathcal{U} = \{\bigcup B(\lambda) : \lambda \in \Lambda\}$ is the desired family.

COROLLARY 2.11. If a space X is perfect and nonarchimedean quasi-metrizable then X is d-IP-expandable.

PROOF. Let $\mathcal{F} = \{F_\lambda : \lambda \in \Lambda\}$ and $\mathcal{U} = \{U_\lambda : \lambda \in \Lambda\}$ be the same pair of families as in Definition 2.1. We apply the theorem to the closed subset $F = \bigcup\{F_\lambda : \lambda \in \Lambda\}$ to get a family \mathcal{W} of open subsets of X satisfying (1) and (2) above with \mathcal{U} replaced by
Observe that for each $F \cup (U - F) = U$, is open in X such that $F = U \cap F$. For each λ, take $W_\lambda \in \mathcal{W}$ such that

$$W_\lambda \cap F = F \subset W_\lambda \subset U_\lambda.'$$

Then it is easy to see that $\{W_\lambda: \lambda \in \Lambda\}$ is the IP-expansion of \mathcal{F} with respect to \mathcal{U}.

We call a family \mathcal{U} of open subsets of X an outer base of a subset F in X if for each open subset O with $F \subset O$ there exists $U \in \mathcal{U}$ such that $F \subset U \subset O$.

COROLLARY 2.12. If X is perfect and nonarchimedean quasi-metrizable, then every closed subset F of X has an outer base \mathcal{U} in X such that \mathcal{U} is interior-preserving in $X - F$.

THEOREM 2.13. Let X be a developable space. Then X is IP-expandable if and only if X is d-IP-expandable.

PROOF. The "only if" part is trivial. "If" part: Let $\mathcal{F} = \{F_\lambda: \lambda \in \Lambda\}$ and $\mathcal{U} = \{U_\lambda: \lambda \in \Lambda\}$ be the same pair of families as in Definition 2.2. Since X is semistatifiable, by the method of [10], we can get a family $\mathcal{H} = \bigcup_{n=1}^{\infty} \mathcal{H}_n$ of closed subsets of X such that each \mathcal{H}_n is discrete in X and for each λ, there exists $\mathcal{H}(\lambda) \subset \mathcal{H}_n$ such that $F_\lambda = \bigcup \mathcal{H}(\lambda)$. Write $\mathcal{H}(\lambda) = \bigcup_{n=1}^{\infty} \mathcal{H}(\lambda, n)$, where $\mathcal{H}(\lambda, n) = \mathcal{H}(\lambda) \cap \mathcal{H}_n$ for each n. By Theorem 2.8, X is nonarchimedean quasi-metrizable. Therefore, by Corollary 2.10, each $H \in \mathcal{H}$ has an outer base $\mathcal{U}(H)$ in X such that $\mathcal{U}(H)$ is interior-preserving in $X - H$. For each $\lambda \in \Lambda$ and each $H \in \mathcal{H}(\lambda, n)$, $n \in \mathbb{N}$, we choose $U(H) \in \mathcal{U}(H)$ such that $U(H) \subset U_\lambda \cap O_n(F_\lambda)$. ({$O_n(F): n \in \mathbb{N}$} is the semistratification of F in X.) Set

$$W_\lambda = \bigcup\{U(H): H \in \mathcal{H}(\lambda)\}.$$

Then it is easy to see that $F_\lambda \subset W_\lambda \subset U_\lambda$ for each λ. To see that $\{W_\lambda - F_\lambda: \lambda \in \Lambda\}$ is interior-preserving in X, let $p \in \bigcap\{W_\lambda - F_\lambda: \lambda \in \Lambda_0\}$ for $\Lambda_0 \subset \Lambda$. There exists $n \in \mathbb{N}$ such that $p \in X - O_n(\bigcup\{F_\lambda: \lambda \in \Lambda_0\})$. Since

$$\bigcup_{k=1}^{n-1} \bigcup\{U(H): H \in \bigcup\{\mathcal{H}(\lambda, k): \lambda \in \Lambda_0\}\},$$

is interior-preserving at p, we obtain an open set O of X such that $p \in O \subset \bigcap\{W_\lambda - F_\lambda: \lambda \in \Lambda_0\}$.

Nagami introduced the class of L-spaces, which lies between the classes of Lašnev spaces and M_1-spaces [6]. He called a space X an L-space if X is a paracompact σ-space such that each closed subset F of X has a closure-preserving outer base and at the same time has an outer base which is interior-preserving in $X - F$. From the definition, we easily have the following result.

THEOREM 2.14. Let X be a stratifiable space. Then X is an L-space if and only if X is IP-expandable.

There exists a stratifiable space X which is not an L-space [6, Example 2.2]. Therefore, d-IP-expandability need not imply IP-expandability even if X is orthocompact.

Following [2], a space X is called D-expandable if for any discrete family $\{F_\lambda: \lambda \in \Lambda\}$ of closed subsets of X and each family $\{U_\lambda: \lambda \in \Lambda\}$ of open subsets of X such
that $F_\lambda \subset U_\lambda$ for each λ and $F_\lambda \cap U_\mu = \emptyset$ whenever $\lambda \neq \mu$, there exists a dissectable family $V = \{V_\lambda : \lambda \in \Lambda\}$ of open subsets of X such that $F_\lambda \subset V_\lambda \subset U_\lambda$ for each λ. (For the definition of dissectable families, refer to [2].) Brandenburg showed that a space is D-paracompact if and only if it is submetacompact and D-expandable [2, Theorem 1].

THEOREM 2.15. If a space X is semistratifiable, then d-IP-expandability implies D-expandability.

PROOF. It suffices to show that every interior-preserving family $U = \{U_\lambda : \lambda \in \Lambda\}$ of open subsets of a semistratifiable space X is dissectable. Since $\{X - U_\lambda : \lambda \in \Lambda\}$ is a closure-preserving family of closed subsets of X, by the method of [10] there exists a family $\mathcal{H} = \bigcup_{n=1}^{\infty} \mathcal{H}_n$ of closed subsets of X satisfying the following:

1. Each \mathcal{H}_n is discrete in X.
2. For each subset $A_0 \subset A$, if $p \in \bigcap\{U_\lambda : \lambda \in A_0\}$ then $p \in H \subset \bigcap\{U_\lambda : \lambda \in A_0\}$ for some $H \in \mathcal{H}$.

For each $n \in \mathbb{N}$ and each $\lambda \in \Lambda$, set

$$H_{\lambda n} = \bigcup\{H \in H_n : H \subset U_\lambda\}.$$

Then by (2), $U_\lambda = \bigcup_{n=1}^{\infty} H_{\lambda n}$ for each λ. Since U is interior-preserving in X, it is easy to see that U is dissectable in X.

However, these notions of expandability are very different, because there exists a nonorthocompact developable space X (for example, $X = (H_0, U)$ in [9, Example 4.9]). Therefore, D-expandability need not imply d-IP-expandability. Also, there exists a perfect subparacompact nonarchimedean quasi-metrizable space [2, Example 1], which is not D-paracompact. Therefore, the converse is also not true.

REFERENCES

DEPARTMENT OF MATHEMATICS, JOETSU UNIVERSITY OF EDUCATION, JOETSU, NIIGATA 943, JAPAN

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use