Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Spans of simple triods


Author: Thelma West
Journal: Proc. Amer. Math. Soc. 102 (1988), 407-415
MSC: Primary 54F15,; Secondary 54F20
DOI: https://doi.org/10.1090/S0002-9939-1988-0921008-8
MathSciNet review: 921008
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We calculate and estimate the spans of objects in certain classes of continua; our main interest is in those objects with positive span.


References [Enhancements On Off] (What's this?)

  • [1] C. E. Burgess, Collections and sequences of continua in the plane. II, Pacific J. Math. 11 (1961), 447–454. MR 0131863
  • [2] A. Lelek, Disjoint mappings and the span of spaces, Fund. Math. 55 (1964), 199–214. MR 0179766
  • [3] A. Lelek, Some problems concerning curves, Colloq. Math. 23 (1971), 93–98, 176. MR 0307204
  • [4] A. Lelek, An example of a simple triod with surjective span smaller than span, Pacific J. Math. 64 (1976), no. 1, 207–215. MR 0428298
  • [5] A. Lelek, On the surjective span and semispan of connected metric spaces, Colloq. Math. 37 (1977), no. 1, 35–45. MR 0482680
  • [6] A. Lelek, The span and the width of continua, Fund. Math. 98 (1978), no. 3, 181–199. MR 0494001
  • [7] A. Lelek and L. Mohler, Real-valued continuous functions and the span of continua, Colloq. Math. 32 (1975), no. 2, 207–209. MR 0405372

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54F15,, 54F20

Retrieve articles in all journals with MSC: 54F15,, 54F20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0921008-8
Article copyright: © Copyright 1988 American Mathematical Society