Rings with projective socle

Authors:
W. K. Nicholson and J. F. Watters

Journal:
Proc. Amer. Math. Soc. **102** (1988), 443-450

MSC:
Primary 16A50; Secondary 16A05, 16A89

DOI:
https://doi.org/10.1090/S0002-9939-1988-0928957-5

MathSciNet review:
928957

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The class of rings with projective left socle is shown to be closed under the formation of polynomial and power series extensions, direct products, and matrix rings. It is proved that a ring has a projective left socle if and only if the right annihilator of every maximal left ideal is of the form , where is an idempotent in . This result is used to establish the closure properties above except for matrix rings. To prove this we characterise the rings of the title by the property of having a faithful module with projective socle, and show that if has such a module, then so does . In fact we obtain more than Morita invariance. Also an example is given to show that , for an idempotent in a ring with projective socle, need not have projective socle. The same example shows that the notion is not left-right symmetric.

**[1]**S. A. Amitsur,*Rings of quotients and Morita contexts*, J. Algebra**17**(1971), 273–298. MR**0414604**, https://doi.org/10.1016/0021-8693(71)90034-2**[2]**Efraim P. Armendariz,*A note on extensions of Baer and P.P.-rings*, J. Austral. Math. Soc.**18**(1974), 470–473. MR**0366979****[3]**Gorô Azumaya,*Some properties of 𝑇𝑇𝐹-classes*, Proceedings of the Conference on Orders, Group Rings and Related Topics (Ohio State Univ., Columbus, Ohio, 1972) Springer, Berlin., 1973, pp. 72–83. Lecture Notes in Math. Vol. 353. MR**0338073****[4]**Giuseppe Baccella,*On \cal𝐶-semisimple rings. A study of the socle of a ring*, Comm. Algebra**8**(1980), no. 10, 889–909. MR**573460**, https://doi.org/10.1080/00927878008822497**[5]**Giuseppe Baccella,*Generalized 𝑉-rings and von Neumann regular rings*, Rend. Sem. Mat. Univ. Padova**72**(1984), 117–133. MR**778337****[6]**W. D. Burgess,*Minimal rings, central idempotents and the Pierce sheaf*, Abelian group theory and related topics (Oberwolfach, 1993) Contemp. Math., vol. 171, Amer. Math. Soc., Providence, RI, 1994, pp. 51–67. MR**1293132**, https://doi.org/10.1090/conm/171/01763**[7]**Shizuo Endo,*Note on p.p. rings. (A supplement to Hattori’s paper)*, Nagoya Math. J.**17**(1960), 167–170. MR**0137746****[8]**Robert Gordon,*Rings in which minimal left ideals are projective*, Pacific J. Math.**31**(1969), 679–692. MR**0265404****[9]**Jitendra N. Manocha,*On rings with essential socle*, Comm. Algebra**4**(1976), no. 11, 1077–1086. MR**0414627**, https://doi.org/10.1080/00927877608822152**[10]**W. K. Nicholson and J. F. Watters,*Morita context functors*, Math. Proc. Cambridge Philos. Soc.**103**(1988), no. 3, 399–408. MR**932665**, https://doi.org/10.1017/S0305004100065014**[11]**Robert C. Shock,*Polynomial rings over finite dimensional rings*, Pacific J. Math.**42**(1972), 251–257. MR**0318201****[12]**J. Zelmanowitz,*Regular modules*, Trans. Amer. Math. Soc.**163**(1972), 341–355. MR**0286843**, https://doi.org/10.1090/S0002-9947-1972-0286843-3

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
16A50,
16A05,
16A89

Retrieve articles in all journals with MSC: 16A50, 16A05, 16A89

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0928957-5

Keywords:
Projective socle,
polynomial rings,
Morita invariance

Article copyright:
© Copyright 1988
American Mathematical Society