Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Le dual des fonctions holomorphes intégrables sur un domaine strictement pseudo-convexe


Author: Bernard Coupet
Journal: Proc. Amer. Math. Soc. 102 (1988), 493-501
MSC: Primary 32H10; Secondary 46E15, 46J15
MathSciNet review: 928967
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that on a strictly pseudoconvex domain with $ {C^4}$ boundary in $ {C^n}$, the dual of the Bergman space $ {B^1}$ is Bloch space.


References [Enhancements On Off] (What's this?)

  • [1] David E. Barrett, Irregularity of the Bergman projection on a smooth bounded domain in 𝐶², Ann. of Math. (2) 119 (1984), no. 2, 431–436. MR 740899, 10.2307/2007045
  • [2] L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegő, Journées: Équations aux Dérivées Partielles de Rennes (1975), Soc. Math. France, Paris, 1976, pp. 123–164. Astérisque, No. 34-35 (French). MR 0590106
  • [3] P. Kranz, Optimal Lipschitz and $ {L^p}$ regularity for the equations $ \bar \partial U = f$ on strongly pseudoconvex domains, Math. Ann. 219 (1975), 233-260.
  • [4] Ewa Ligocka, The Hölder continuity of the Bergman projection and proper holomorphic mappings, Studia Math. 80 (1984), no. 2, 89–107. MR 781328
  • [5] Steven R. Bell, Biholomorphic mappings and the ∂-problem, Ann. of Math. (2) 114 (1981), no. 1, 103–113. MR 625347, 10.2307/1971379

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32H10, 46E15, 46J15

Retrieve articles in all journals with MSC: 32H10, 46E15, 46J15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0928967-8
Article copyright: © Copyright 1988 American Mathematical Society