Characterizations of denting points

Authors:
Bor-Luh Lin, Pei-Kee Lin and S. L. Troyanski

Journal:
Proc. Amer. Math. Soc. **102** (1988), 526-528

MSC:
Primary 46B20; Secondary 52A07

DOI:
https://doi.org/10.1090/S0002-9939-1988-0928972-1

MathSciNet review:
928972

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a PC (point of continuity) for a bounded closed convex set of a Banach space. Then is a denting point of if and only if is an extreme point (resp. strong extreme point; weak*-extreme point) of . A new definition for denting point is also given.

**[KR]**Ken Kunen and Haskell Rosenthal,*Martingale proofs of some geometric results in Banach space theory*, Pacific J. Math.**100**(1982), 153-175. MR**661446 (83k:46023)****[LL]**Bor-Luh Lin and Pei-Kee Lin,*Property**in Lebesgue-Bochner functions space*, Proc. Amer. Math. Soc.**95**(1985), 581-584. MR**810168 (87a:46060)****[LLT1]**Bor-Luh Lin, Pei-Kee Lin and S. L. Troyanski,*Some geoemtric and topological properties of the unit sphere in a Banach space*, Math. Ann.**274**(1986), 613-616. MR**848506 (87k:46036)****[LLT2]**-,*A characterization of denting points of a closed bounded convex set*, Longhorn Notes, U. T. Functional Analysis Seminar, 1985-86, The University of Texas at Austin, pp. 99-101. MR**1017047 (91g:46016)****[R]**Haskell Rosenthal,*On the structure of nondentable closed bounded convex sets*, preprint. MR**947756 (89g:46041)****[S]**W. Schachermayer,*The Radon-Nikodým property and the Krein-Milman property are equivalent for strongly regular sets*, preprint. MR**902791 (89c:46030)****[T]**S. Troyanski,*On a property of the norm which is close to local uniform rotundity*, Math. Ann.**271**(1985), 305-314. MR**783556 (86g:46030)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46B20,
52A07

Retrieve articles in all journals with MSC: 46B20, 52A07

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0928972-1

Keywords:
Denting point,
extreme point,
strong extreme point

Article copyright:
© Copyright 1988
American Mathematical Society