ON THE PARTIAL SUMS OF CONVEX FUNCTIONS OF ORDER 1/2

RAM SINGH

(Communicated by Paul S. Muhly)

ABSTRACT. Let \(f(z) = z + a_2 z^2 + \cdots \) be regular and univalently convex of order 1/2 in the unit disc \(U \) and let \(s_n(z, f) \) denote its nth partial sum. In the present note we determine the radius of convexity of \(s_n(z, f) \), depending on \(n \), and generalize and sharpen a result of Ruscheweyh concerning the partial sums of convex functions. We also prove that for every \(n \geq 1 \), \(\text{Re}(s_n(z, f)/z) > 1/2 \) in \(U \).

1. Let \(S \) denote the class of functions
\[
f(z) = z + \sum_{k=2}^{\infty} a_n z^n
\]
which are regular and univalent in the unit disc \(U = \{ z \mid |z| < 1 \} \). Denote by \(S_t \) and \(K \) the usual subclasses of \(S \) consisting of functions which map \(U \) onto starlike (with respect to the origin) and convex domains, respectively. Let \(S_t(1/2) \subset S_t \) be the class of functions which are starlike of order 1/2. Similarly, let \(K(1/2) \subset K \) be the family of functions which are convex of order 1/2. It is well known that \(K \subset S_t(1/2) \). Let
\[
s_n(z, f) = z + \sum_{k=2}^{n} a_k z^k
\]
denote the nth partial sum of \(f(z) \). Kobori [2] proved that if \(f \in K \), then for each \(n \geq 1 \), \(s_n(z, f) \) is starlike and univalent in \(|z| < 1/2 \). Using the theory of convolution, Ruscheweyh [5] in 1972 obtained the following result.

THEOREM A. Let \(r_n \) denote the positive root of
\[
\varphi_n(r) = 1 - (n + 1) r^n - n r^{n+1} \quad (n \in \mathbb{N}),
\]
and let \(f \in K \). Then \(s_n(z, f) \) is univalent for \(|z| < r_n \) and maps this disc onto a close-to-convex domain. For \(n \) even, \(r_n \) cannot be replaced by any larger number.

Robertson [3] in 1981 proved that if \(f \in K(1/2) \), then each \(s_n(z, f) \) is close-to-convex with respect to \(f \) and hence univalent in \(U \).

Using the fact that the class \(K \) is closed with respect to Hadamard convolution, we can readily compute the radius of convexity of \(s_n(z, f) \), \(f \in K \), depending on \(n \). In the present paper we determine the radius of convexity of \(s_n(z, f) \), \(f \in K(1/2) \), in terms of \(n \). As a corollary to our result, we shall show that one can weaken the hypothesis of Ruscheweyh's theorem and still make a stronger assertion. We shall also prove that if \(f \in K(1/2) \), then \(\text{Re}(s_n(z, f)/z) > 1/2 \) (\(z \in U \)) for each \(n \in \mathbb{N} \).
2. We shall need the following definitions and results.

Let \(f \) and \(g \) be analytic in \(|z| < R\) and \(f(0) = g(0)\). In addition, suppose that \(g \) is univalent in \(|z| < R\). Then we say that \(f \) is subordinate to \(g \) in \(|z| < R\), in symbols, \(f \prec g(|z| < R) \), if \(f(|z| < R) \subset g(|z| < R) \).

Lemma 1. If \(f \) is analytic in \(U \) and \(f(0) = f'(0) - 1 = 0 \), then \(f \in S_t(1/2) \) if and only if

\[
\text{Re} \left(\frac{f(z_1) - f(z_2)}{z_1 - z_2} \right) > \frac{1}{2}
\]

for \(|z_1| < 1, |z_2| < 1\).

Lemma 2. For \(0 \leq \theta \leq \pi \),

\[
\frac{1}{2} + \sum_{k=1}^{n} \frac{1}{k + 1} \cos k\theta \geq 0.
\]

Lemma 1 is due to Ruscheweyh and Sheil-Small [6] and Lemma 2 is due to Rogosinski and Szegö [4].

3. We now prove the following:

Theorem 1. Let \(f \in K(1/2) \) and let \(r_n \) be defined as in Theorem A. Then \(s_n(z, f) \) maps the disc \(|z| < r_n\) onto a convex domain. For even \(n \), the number \(r_n \) cannot be replaced by any larger one.

Proof. Since \(f \in K(1/2) \), \(g(z) = zf'(z) \in S_t(1/2) \) and, therefore, in view of Lemma 1, it follows that for all \(z \) and \(\xi \) in \(U \),

\[
\text{Re} \left(\frac{g(z) - g(\xi)}{z - \xi} \right) > \frac{1}{2}
\]

Treating \(\xi \) as a constant, this leads to

\[
\text{Re} \left[1 + \frac{1}{\xi} \left(1 - \frac{s_1(\xi, g)}{g(\xi)} \right) z + \frac{1}{\xi^2} \left(1 - \frac{s_2(\xi, g)}{g(\xi)} \right) z^2 + \cdots + \frac{1}{\xi^n} \left(1 - \frac{s_n(\xi, g)}{g(\xi)} \right) z^n + \cdots \right] > \frac{1}{2}
\]

(z in \(U \)), and, consequently, for all \(n \geq 1 \), we get

\[
\left| \frac{1}{\xi^n} \left(1 - \frac{s_n(\xi, g)}{g(\xi)} \right) \right| \leq 1 \quad [1, p. 41].
\]

Replacing \(\xi \) by \(z \) and writing \(g \) in terms of \(f \), the above inequality provides

\[
1 - \frac{s_n'(z, f)}{f''(z)} = z^{n-1} \varphi(z),
\]

where \(\varphi \) is analytic, \(\varphi(0) = 0 \) and \(|\varphi(z)| \leq |z| \) in \(U \). From (1), we get

\[
\text{Re} \left(1 + \frac{zf''(z)}{f'(z)} \right) = \text{Re} \left[\left(1 + \frac{zf''(z)}{f'(z)} \right) - z^{n-1} \frac{((n-1)\varphi(z) + z\varphi'(z))}{1 - z^{n-1}\varphi(z)} \right]
\]

\[
\geq \frac{1}{1 + r} - \frac{r^{n-1}}{(1 - r^2)} \left[\frac{(n-1)(1 - r^2)t + r(1 - t^2)}{(1 - r^{n-1}t)} \right],
\]
where \(r = |z|, \ t = |\varphi(z)| \) and use has been made of the well-known inequalities:

\[
|\varphi'(z)| \leq \frac{1 - |\varphi(z)|^2}{1 - |z|^2},
\]

\[
\text{Re} \left(1 + \frac{z f''(z)}{f'(z)} \right) \geq \frac{1}{1 + |z|} \quad (f \in K(1/2)).
\]

Letting

\[
\psi(t) = \frac{(n - 1)(1 - t^2)t + r(1 - t^2)}{1 - r^{n-1}t},
\]

we readily see that

\[
N(\psi'(t)) = \text{the numerator of } \psi'(t)
\]

\[
= (n - 1)(1 - r^2) + r^n - 2rt + r^n t^2,
\]

and that \((\partial / \partial t)N(\psi'(t)) \leq 0\).

\[
\therefore \min N(\psi'(t)) = N(\psi'(r)) = (n - 1) - (n + 1)r^2 + r^n + 2
\]

\[
= (r - 1)^2[r^n + 2r^{n-1} + 4r^{n-2} + \cdots + 2(n - 1)r + (n - 1)] > 0.
\]

Thus we conclude that \(\psi'(t) > 0 \) for all admissible values of \(t \) and as such

\[
\text{Re} \left(1 + \frac{z s_n''(z,f)}{s'(z,f)} \right) \geq \frac{1}{1 + r} - \frac{n r^n}{1 - r^n}
\]

\[
= \frac{1 - (n + 1)r^n - nr^{n+1}}{(1 + r)(1 - r^n)}.
\]

\(s_n(z,f) \) will, therefore, map the disc \(|z| < r_n\) onto a convex domain, where \(0 < r_n < 1 \) is the unique positive root of the polynomial \(\varphi_n(r) \), defined in Theorem A. This proves the first assertion of our theorem. To prove the second assertion, let \(n = 2m \) be any even positive integer, and consider the function \(f_0(z) = -\log(1 - z) \), which belongs to \(K(1/2) \). Then

\[
1 + \frac{s_{2m}'(z, f_0)}{s_{2m}'(z, f_0)} = \frac{1 + 2z + 3z^2 + \cdots + 2mz^{2m-1}}{1 + z + z^2 + \cdots + z^{2m-2}}
\]

\[
= \frac{1 - (2m + 1)z^{2m} + 2mz^{2m+1}}{(1 - z)(1 - z^{2m})},
\]

and, therefore,\[
\left[1 + \frac{z s_{2m}'(z, f_0)}{s'(z, f_0)} \right]_{z = -r} = \frac{1 - (n + 1)r^n - nr^{n+1}}{(1 + r)(1 - r^n)}
\]

\[
= 0, \quad \text{when } r = r_n.
\]

The proof of Theorem 1, is, therefore, complete.

Corollary 1. If \(f \in S_t(1/2) \), then \(s_n(z,f) \) maps the disc \(|z| < r_n\) onto a domain which is starlike with respect to the origin. For even \(n \), the number \(r_n \) cannot be replaced by any larger one.

Since \(K \subset S_t(1/2) \), Corollary 1 shows that one can weaken the hypothesis of Ruscheweyh's theorem \((K \text{ may be replaced by } S_t(1/2))\) and still make a stronger assertion \(|z| < r_n \text{ is mapped onto a starlike domain}\).
As Ruscheweyh [5] has shown, the number r_n satisfies

$$(2n)^{-1/n} \leq r_n \leq n^{-1/(n-1)}$$

and

$$r_n = 1 - \frac{\log(2n)}{n} + \frac{\log(n) \log(4en)}{2n^2} + o\left(\frac{\log(n)}{n^2}\right).$$

Theorem 2. Let $f \in K(1/2)$. Then for each $n \geq 1$,

$$\text{Re} \left(\frac{s_n(z,f)}{z} \right) > \frac{1}{2} \quad (z \in U).$$

The constant $1/2$ cannot be replaced by any larger one.

Proof. Since $f \in K(1/2)$, the function $zf'(z) \in S_t(1/2)$ and, hence,

$$\text{Re} \ f'(z) > \frac{1}{2} \quad (z \in U).$$

Now we can write

$$\frac{s_n(z,f)}{z} = f'(z) \ast \left[1 + \sum_{k=2}^{n} \frac{z^{k-1}}{k} \right]$$

$$= f'(z) \ast \left[1 + \sum_{k=1}^{n-1} \frac{z^k}{k+1} \right],$$

where \ast denotes Hadamard convolution.

Putting $z = re^{i\theta}$, $0 \leq r < 1$, $0 \leq \theta < 2\pi$, and making use of the minimum principle for harmonic functions along with Lemma 2, we obtain

$$\text{Re} \left[1 + \sum_{k=1}^{n-1} \frac{r^k \cos k\theta}{k+1} \right] = 1 + \sum_{k=1}^{n-1} \frac{r^k \cos k\theta}{k+1} \geq \frac{1}{2}.$$

(4)

From (2), (4) and (3) we deduce that $\text{Re}(s_n(z,f)/z) > 1/2$ in U. Since for the function $f_0(z) = -\log(1 - z)$ ($\in K(1/2)$), we have $(s_2(z,f)/z) = 1 + (z/2)$, the sharpness of the number $1/2$ is obvious.

Remark. It is clear from the proof of Theorem 2 that its assertion holds for the wider class of functions f which are regular in and satisfy the conditions $\text{Re} f'(z) > 1/2$, $z \in U$.

It is well known that if $f \in K$, then $z/2 = s_1(z,f)/2 < f(z)$ in U. Since each $s_n(z,f)$, $f \in K(1/2)$, is univalent in U, it is natural to ask for the largest number λ_n, $0 < \lambda_n < 1$, such that $\lambda_n s_n(z,f) < s_{n+1}(z,f)$ in U. The following theorem, which we state without proof, provides a lower bound for λ_n.

Theorem 3. If $f \in K(1/2)$, then

(i) $z/2 = \frac{1}{2} s_1(z,f) < s_2(z,f)$, $(z \in U)$,

and for $n \geq 2$,

(ii) $((n-1)/(n+1))s_n(z,f) < s_{n+1}(z,f)$, $(z \in U)$.

The number $1/2$ in (i) cannot be replaced by any larger one.
REFERENCES

DEPARTMENT OF MATHEMATICS, PUNJABI UNIVERSITY, PATIALA-147002, INDIA