Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Removable singularities in the Nevanlinna class and in the Hardy classes


Author: Juhani Riihentaus
Journal: Proc. Amer. Math. Soc. 102 (1988), 546-550
MSC: Primary 32D20
DOI: https://doi.org/10.1090/S0002-9939-1988-0928977-0
MathSciNet review: 928977
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that certain sets in $ {{\mathbf{C}}^n},n \geq 2$, which we call $ n$-small, are removable singularities for holomorphic functions in the Nevanlinna class. Since our class of sets includes polar sets (in $ {{\mathbf{R}}^{2n}}$) our result includes the previous removable singularity results for the Nevanlinna class. We give also a related result for a subclass of the Hardy class.


References [Enhancements On Off] (What's this?)

  • [1] U. Cegrell, Removable singularity sets for analytic functions having modulus with bounded Laplace mass, Proc. Amer. Math. Soc. 88 (1983), 283-286. MR 695259 (84g:32024)
  • [2] J. A. Cima and I. R. Graham, On the extension of holomorphic functions with growth conditions across analytic subvarieties, Michigan Math. J. 28 (1981), 241-256. MR 616273 (82j:32030)
  • [3] R. 0. Davies and H. Fast, Lebesgue density influences Hausdorff measure; Large sets surface like from many directions, Mathematika 25 (1978), 116-119. MR 0492190 (58:11336)
  • [4] R. Harvey and B. Shiffman, A characterization of holomorphic chains, Ann. of Math. 99 (1974), 553-587. MR 0355095 (50:7572)
  • [5] W. K. Hayman and P. B. Kennedy, Subharmonic functions. I, Academic Press, London, 1976.
  • [6] M. Hervé, Analytic and plurisubharmonic functions in finite and infinite dimensional spaces, Springer-Verlag, Berlin, 1970. MR 0466602 (57:6479)
  • [7] J. Hyvönen and J. Riihentaus, On the extension in the Hardy classes and in the Nevanlinna class, Bull. Soc. Math. France 112 (1984), 469-480. MR 802536 (87b:32025)
  • [8] -, Removable singularities for holomorphic functions with locally finite Riesz mass, J. London Math. Soc. (2) 35 (1987), 296-302. MR 881518 (88j:32018)
  • [9] P. Jäarvi, Removable singularities for $ {H^p}$-functions, Proc. Amer. Math. Soc. 86 (1982), 596-598. MR 674087 (84a:32009)
  • [10] P. Mattila, An integral inequality for capacities, Math. Scand. 53 (1983), 256-264. MR 745079 (85f:31016)
  • [11] K. Noshiro, Cluster sets, Springer-Verlag, Berlin, 1960. MR 0133464 (24:A3295)
  • [12] M. Parreau, Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann, Ann. Inst. Fourier (Grenoble) 3 (1951), 103-197. MR 0050023 (14:263c)
  • [13] J. Riihentaus, On the extension of holomorphic functions with growth conditions, J. London Math. Soc. (2) 27 (1983), 281-288. MR 692534 (85b:32021)
  • [14] -, On the extension of separately hyperharmonic fonctions and $ {H^p}$-functions, Michigan Math. J. 31 (1984), 99-112. MR 736475 (85j:32023)
  • [15] A. Sadullaev, Rational approximation and pluripolar sets, Mat. Sb. (N.S.) 119 (1982), 96-118. (Russian) MR 672412 (84d:32026)
  • [16] D. Singman, Exceptional sets in a product of harmonic spaces, Math. Ann. 262 (1983), 29-43. MR 690005 (84d:31007)
  • [17] -, Removable singularities for $ n$-harmonic functions and Hardy classes in polydiscs, Proc. Amer. Math. Soc. 90 (1984), 299-302. MR 727254 (86a:32032)
  • [18] Y.-T. Siu, Techniques of extension of analytic objects, Dekker, New York, 1974. MR 0361154 (50:13600)
  • [19] H. Whitney, Complex analytic varieties, Addison-Wesley, Reading, Mass., 1972. MR 0387634 (52:8473)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32D20

Retrieve articles in all journals with MSC: 32D20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0928977-0
Keywords: Holomorphic function, meromorphic function, removable singularity set, polar set, Hausdorff measure, Riesz mass, harmonic majorant
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society