Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Invariant subspaces for algebras of linear operators and amenable locally compact groups

Authors: Anthony T. M. Lau and James C. S. Wong
Journal: Proc. Amer. Math. Soc. 102 (1988), 581-586
MSC: Primary 43A20; Secondary 47D05
MathSciNet review: 928984
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be a locally compact group. We prove in this paper that $ G$ is amenable if and only if the group algebra $ {L_1}\left( G \right)$ (respectively the measure algebra $ M\left( G \right)$) satisfies a finite-dimensional invariant subspace property $ T\left( n \right)$ for $ n$-dimensional subspaces contained in a subset $ X$ of a separated locally convex space $ E$ when $ {L_1}\left( G \right)$ (respectively $ M\left( G \right)$) is represented as continuous linear operators on $ E$. We also prove that for any locally compact group, the Fourier algebra $ A\left( G \right)$ and the Fourier Stieltjes algebra $ B\left( G \right)$ always satisfy $ T\left( n \right)$ for each $ n = 1,2, \ldots $.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 43A20, 47D05

Retrieve articles in all journals with MSC: 43A20, 47D05

Additional Information

Keywords: Amenable locally compact groups, group algebra, measure algebra, Fourier algebra, Fourier Stieltjes algebra, finite-dimensional, invariant subspaces
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society