Extremal lengths on Denjoy domains

Author:
R. C. Penner

Journal:
Proc. Amer. Math. Soc. **102** (1988), 641-645

MSC:
Primary 30C75; Secondary 30C20

DOI:
https://doi.org/10.1090/S0002-9939-1988-0928996-4

MathSciNet review:
928996

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We consider the problem of computing the extremal lengths of certain homotopy classes of curves in certain symmetric surfaces. Specifically, we concentrate on plane domains which are conformal to the Riemann sphere with a collection of slits in the real axis removed; such a conformal type is called a *Denjoy domain*. Using Jenkins-Strebel forms, the extremal length of any sufficiently symmetric homotopy class of curves is computed in terms of the endpoints of the slits. One can then choose a symmetric pants decomposition of the surface and invert the formulas derived, which are a set of coupled quadratic equations. In this way, one obtains a coordinatization of the space of all marked Denjoy domains of a fixed topological type.

**[Ab]**W. Abikoff,*The real analytic theory of Teichmüller space*, Lecture Notes in Math., vol. 280, Springer-Verlag, Berlin and New York, 1980. MR**590044 (82a:32028)****[Ah]**L. V. Ahlfors,*Conformal invariants*, McGraw-Hill, New York, 1973. MR**0357743 (50:10211)****[Ea]**C. J. Earle,*The moduli space of a closed Riemann surface with symmetries*, Advances in the Theory of Riemann Surfaces, Ann. of Math. Stud., no. 66, Princeton Univ. Press, Princeton, N. J., 1971, pp. 119-130. MR**0296282 (45:5343)****[HM]**J. H. Hubbard and H. Masur,*Quadratic differentials and foliations*, Acta Math.**142**(1979), 221-274. MR**523212 (80h:30047)****[Je]**J. A. Jenkins,*On the existence of certain general extremal metrics*, Ann. of Math.**66**(1957), 440-453. MR**0090648 (19:845g)****[Mu]**D. Mumford,*A remark on Mahler's compactness theorem*, Proc. Amer. Math. Soc.**28**(1971), 289-294. MR**0276410 (43:2157)****[Pi]**E. Pitz,*Extremal length and Teichmüller theory*, thesis, Techn. Univ., Berlin, 1983.**[Lv]**O. Lehto and K. I. Virtanen,*Quasiconformal mappings in the plane*, Springer-Verlag, Berlin and New York, 1973. MR**0344463 (49:9202)****[St]**K. Strebel,*Quadratic differentials*, Springer-Verlag, Berlin and New York, 1984. MR**743423 (86a:30072)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
30C75,
30C20

Retrieve articles in all journals with MSC: 30C75, 30C20

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0928996-4

Article copyright:
© Copyright 1988
American Mathematical Society