Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Homotopy type finiteness theorems for certain precompact families of Riemannian manifolds


Author: Takao Yamaguchi
Journal: Proc. Amer. Math. Soc. 102 (1988), 660-666
MSC: Primary 53C20
DOI: https://doi.org/10.1090/S0002-9939-1988-0928999-X
MathSciNet review: 928999
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we consider a precompact family of Riemannian manifolds with respect to the Hausdorff distance, and prove the homotopy type finiteness of elements in the family. This is an extension in the homotopy type version of the Cheeger and Weinstein finiteness theorems.


References [Enhancements On Off] (What's this?)

  • [1] M. Berger, Une borne inférieure pour le volume d'une variété riemannienne et fonction du rayon d'injectivite, Ann. Inst. Fourier (Grenoble) 30 (1980), 259-265. MR 597027 (82b:53047)
  • [2] -, Recent trends in riemannian geometry, preprint, 1982. MR 688824 (84d:53047)
  • [3] R. Biship, A relation between volume, mean curvature, and diameter, Notices Amer. Math. Soc. 10 (1963), 364.
  • [4] J. Cheeger, Finiteness theorems for Riemannian manifolds, Amer. J. Math. 92 (1970), 61-74. MR 0263092 (41:7697)
  • [5] C. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. Ecole Norm. Sup. 13 (1980), 419-435. MR 608287 (83d:58068)
  • [6] K. Fukaya, A boundary of the set of Riemannian manifolds with bounded curvatures and diameters, preprint, 1985. MR 950552 (89h:53090)
  • [7] S. Gallot, Inégalités isopérimétriques, courbure de Ricci et invariants géométriques, C.R. Acad. Sci. Paris 296 (1983), 333-336 et 365-368. MR 697966 (85c:53069a)
  • [8] R. E. Greene and H. Wu, Lipschitz convergence of Riemannian manifolds, preprint, 1985. MR 917868 (89g:53063)
  • [9] M. Gromov, Curvature, diameter and Betti numbers, Comment. Math. Helv. 56 (1981), 179-195. MR 630949 (82k:53062)
  • [10] -, Volume and bounded cohomology, Inst. Hautes Etudes Sci. Publ. Math. 56 (1983), 223-230.
  • [11] -, Structures métriques pour les variété riemanniennes, rédigé par J. Lafontaine et P. Pansu, Cedic/Fernand Nathan, Paris, 1981. MR 682063 (85e:53051)
  • [12] K. Grove and K. Shiohama, A generalized sphere theorem, Ann. of Math. (2) 106 (1977), 201-211. MR 0500705 (58:18268)
  • [13] Y. Itokawa, The topology of certain Riemannian manifolds with positive Ricci curvature, J. Differential Geom. 18 (1983), 151-156. MR 697986 (84i:53044)
  • [14] A. Katsuda, Gromov's convergence theorem and its application, Nagoya Math. J. 100 (1985), 11-48. MR 818156 (87e:53067)
  • [15] S. B. Myers, Riemannian manifolds with positive mean curvature, Duke Math. J. 8 (1941), 401-404. MR 0004518 (3:18f)
  • [16] S. Peters, Cheeger's finiteness theorem for diffeomorphism classes of Riemannian manifolds, J. Reine Angew. Math. 349 (1984), 77-82. MR 743966 (85j:53046)
  • [17] G. De Rham, Complexes à automorphismes et homémorphie différentiable, Ann. Inst. Fourier (Grenoble) 2 (1950), 51-67. MR 0043468 (13:268c)
  • [18] T. Sakai, Comparison and finiteness theorems in Riemannian geometry, Geometry of Geodesies and Related Topics, Advanced Studies in Pure Math., vol 3, 1984, pp. 125-181. MR 758652 (86f:53051)
  • [19] K. Shiohama, A sphere theorem for manifoldss of positive Ricci curvature, Trans. Amer. Math. Soc. 275 (1983), 811-819. MR 682734 (84c:53041)
  • [20] A. Weinstein, On the homotopy types of positively pinched manifolds, Arch. Math. 18 (1967), 523-524. MR 0220311 (36:3376)
  • [21] T. Yamaguchi, Locally geodesically quasiconvex functions on complete Riemannian manifolds, Trans. Amer. Math. Soc. 298 (1986), 301-330. MR 857446 (87j:53069)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C20

Retrieve articles in all journals with MSC: 53C20


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0928999-X
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society