Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



On the cardinality of a topology

Author: Ruan Yongbin
Journal: Proc. Amer. Math. Soc. 102 (1988), 696-698
MSC: Primary 54A25; Secondary 04A10
MathSciNet review: 929005
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ o\left( X \right)$ denote the cardinality of topology of a space $ X$. I. Juhasz proves that $ o{\left( X \right)^\omega } = o\left( X \right)$ for regular hereditarily paracompact spaces. We prove it for more general classes of spaces.

References [Enhancements On Off] (What's this?)

  • [1] I. Juhasz, Two set-theoretic problems in topology, Proc. 4th Prague Sympos. on General Topology (1976), Part A, Springer-Verlag, pp. 115-123. MR 0458350 (56:16553)
  • [2] -, Cardinal functions in topology--Ten years later, MCT 123, Mathematisch Centrum, Amsterdam, 1980.
  • [3] E. K. Van Douwen and Zhou Hao-Xuan, The number of cozero-sets is an $ \omega $-power, 1980.
  • [4] H. R. Bennett and D. J. Lutzer, A note on weak $ \theta $-refinability, General Topology Appl. 2 (1972), 49-54. MR 0301697 (46:853)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54A25, 04A10

Retrieve articles in all journals with MSC: 54A25, 04A10

Additional Information

Keywords: Hereditary paracompactness, weak $ \theta $-refinability, weakly collectionwise normality
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society