A quadratic system with a nonmonotonic period function

Authors:
Carmen Chicone and Freddy Dumortier

Journal:
Proc. Amer. Math. Soc. **102** (1988), 706-710

MSC:
Primary 58F22; Secondary 34C25

MathSciNet review:
929007

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For a certain and the quadratic system has a center at the origin surrounded by a one-parameter family of periodic trajectories. We show the period is not a monotone function of the parameter.

**[1]**Carmen Chicone,*The monotonicity of the period function for planar Hamiltonian vector fields*, J. Differential Equations**69**(1987), no. 3, 310–321. MR**903390**, 10.1016/0022-0396(87)90122-7**[2]**-,*Geometric methods for two point nonlinear boundary value problems*, preprint, 1986.**[3]**S.-N. Chow and J. A. Sanders,*On the number of critical points of the period*, J. Differential Equations**64**(1986), no. 1, 51–66. MR**849664**, 10.1016/0022-0396(86)90071-9**[4]**Shui-Nee Chow and Duo Wang,*On the monotonicity of the period function of some second order equations*, Časopis Pěst. Mat.**111**(1986), no. 1, 14–25, 89 (English, with Russian and Czech summaries). MR**833153****[5]**Roberto Conti,*About centers of quadratic planar systems*, preprint, Instituto Matematico, Universita Degli Studi di Firenze, 1986.**[6]**W. S. Loud,*Behavior of the period of solutions of certain plane autonomous systems near centers*, Contributions to Differential Equations**3**(1964), 21–36. MR**0159985****[7]**V. A. Lunkevich and K. S. Sibirskiĭ,*Integrals of a general quadratic differential system in cases of the center*, Differentsial′nye Uravneniya**18**(1982), no. 5, 786–792, 915 (Russian). MR**661356****[8]**Franz Rothe,*Thermodynamics, real and complex periods of the Volterra model*, Z. Angew. Math. Phys.**36**(1985), no. 3, 395–421 (English, with German summary). MR**797236**, 10.1007/BF00944632**[9]**-,*Periods of oscillation, nondegeneracy and specific heat of Hamiltonian systems in the plane*, Proc. Internat. Conf. Differential Equations and Math. Phys. (Birmingham, Alabama, 1986) (to appear).**[10]**Renate Schaaf,*A class of Hamiltonian systems with increasing periods*, J. Reine Angew. Math.**363**(1985), 96–109. MR**814016**, 10.1515/crll.1985.363.96**[11]**Renate Schaaf,*Global behaviour of solution branches for some Neumann problems depending on one or several parameters*, J. Reine Angew. Math.**346**(1984), 1–31. MR**727393**, 10.1515/crll.1984.346.1**[12]**Duo Wang,*On the existence of 2𝜋-periodic solutions of the differential equation 𝑥+𝑔(𝑥)=𝑝(𝑡)*, Chinese Ann. Math. Ser. A**5**(1984), no. 1, 61–72 (Chinese). An English summary appears in Chinese Ann. Math Ser. B 5 (1984), no. 1, 133. MR**743783****[13]**J. Waldvogel,*The period in the Lotka-Volterra predator-prey model*, SIAM J. Numer. Anal.**20**(1983).**[14]**Jörg Waldvogel,*The period in the Lotka-Volterra system is monotonic*, J. Math. Anal. Appl.**114**(1986), no. 1, 178–184. MR**829122**, 10.1016/0022-247X(86)90076-4

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
58F22,
34C25

Retrieve articles in all journals with MSC: 58F22, 34C25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1988-0929007-7

Article copyright:
© Copyright 1988
American Mathematical Society