A HILBERT CUBE L-S CATEGORY
RAYMOND Y. WONG
(Communicated by Doug W. Curtis)

ABSTRACT. Let M be a compact connected Hilbert cube manifold (Q-manifold). Define $C_z(M)$ to be the smallest integer k such that M can be covered with k open subsets each of which is homeomorphic to $Q \times [0,1)$. Recently L. Montejano proved that, for every compact connected polyhedron P, $C_z(P \times Q) = \text{cat}(P) + 1$, where $\text{cat}(P)$ is the Lusternik-Schnirelmann category of P. Using a different approach, we prove a noncompact analog of the above theorem by showing that $C_z(P \times Q \times [0,1)) = \text{cat}(P)$ for every compact connected polyhedron P.

1. Introduction. For a compact polyhedron P, the Lusternik-Schnirelmann (L-S) category of P, $\text{cat}(P)$, is the smallest integer k such that P can be covered with k subpolyhedra each of which is null homotopic in P. A Q-manifold is a separable metric space modeled on the Hilbert cube $Q = [0,1]^\infty$. Let M be a connected Q-manifold. Define $C_z(M)$ to be the smallest integer k such that M can be covered with k open subsets each of which is homeomorphic to $Q \times [0,1)$. Recently, L. Montejano proved the following theorem concerning the relationship between $\text{cat}(P)$ and $C_z(P \times Q)$ (where $P \times Q$ is a Q-manifold [WE]):

Theorem [MO1]. For every compact connected polyhedron P,

$$C_z(P \times Q) = \text{cat}(P) + 1.$$

Obviously, $C_z(Q) = 2$. On the other hand, suppose that M is a compact connected Q-manifold with $C_z(M) = 2$. By the triangulation theorem of [CH1], M is homeomorphic to $P \times Q$ for some compact connected polyhedron P. Hence $\text{cat}(P) = 1$ by the above theorem, i.e., P is contractible. Thus M is homeomorphic to Q, since the Hilbert cube is the only contractible compact Q-manifold [CH1].

Extending to the noncompact case, we observe that if $P = \{\text{point}\}$,

$$C_z(P \times Q \times [0,1)) = 1 = \text{cat}(P).$$

Hence it is natural to ask if $C_z(P \times Q \times [0,1)) = \text{cat}(P)$ in general. In this note we answer the question affirmatively.

Theorem 1. For every compact polyhedron P,

$$C_z(P \times Q \times [0,1)) = \text{cat}(P).$$

For an arbitrary space X, let $\text{cat'}(X)$ denote the smallest integer k such that X can be covered by K open sets each of which is null-homotopic in X. For a

Received by the editors June 6, 1986 and, in revised form, November 12, 1986.
1980 Mathematics Subject Classification (1985 Revision). Primary 58E05, 57N20.
Key words and phrases. Lusternik-Schnirelmann category, Hilbert cube manifold, polyhedron, Z-sets.
compact polyhedron P, it is easily seen that $\text{cat}(P) = \text{cat}'(P) = \text{cat}'(P \times Q)$. This observation, together with the triangulation theorem referred to above, shows that Montejano's result and our result may be formulated as follows:

Corollary. For every compact connected Q-manifold M, $C_z(M) = \text{cat}'(M) + 1$ and $C_z(M \times [0,1)) = \text{cat}'(M)$.

Proof of Theorem 1. It is easy to verify that $\text{cat}(P) \leq C_z(P \times Q \times [0,1))$. On the other hand, suppose that $\text{cat}(P) = k$. Let P_1, P_2, \ldots, P_k be a null-homotopic cover of P. Denote $M = P \times Q \times \{0\} \subset P \times Q \times [0,1) = \tilde{M}$. Let $B_i = P_i \times Q \times \{0\}$. B_i is a null-homotopic Z-set of \tilde{M}. By standard I-D topology we may assume that the cone of B_i is imbedded in \tilde{M} as a Z-set in such a way that the base coincides with B_i. Since the cone contracts to its vertex v_i and v_i has an open neighborhood U_i homeomorphic to $Q \times [0,1)$, by Z-set unknotting there is a homeomorphism on \tilde{M} taking B_i into U_i. So, without loss of generality we may assume that $B_i \subset U_i$. Let $\{Q_n\}_{n=1}^{\infty}$ denote the collection of all end-faces of Q; that is, $Q_n = \pi_i^{-1}(0)$ or $\pi_i^{-1}(1)$ for some i, where π_i is the ith-projection of Q into the ith-factor. Let $A_{nm} = P_i \times Q_n \times [0, m/(m+1)]$, where $n, m = 1, 2, \ldots$, and let $A_i = P_i \times Q \times [0,1)$.

Each A_{nm} is a Z-set in \tilde{M} and is contractible to $P_i \times Q_n \times \{0\} \subset U_i$. We want to employ the engulfing apparatus of [CH1] to construct an open imbedding h_i of $Q \times [0,1)$ into \tilde{M} such that $\bigcup_{n,m} A_{nm} \subset h_i(Q \times [0,1))$. Let $g_i : Q \times [0,1) \to U_i$ be a homeomorphism. The key is to verify the following:

Lemma A. For any Z-set $K \subset P_i \times Q \times [0, r)$, $r < 1$, there is an open imbedding $g_i' : Q \times [0,1) \to \tilde{M}$ such that

$$g_i'(Q \times [0, \frac{1}{2}]) = g_i(Q \times [0, \frac{1}{2}]) \quad \text{and} \quad g_i'(Q \times [0, \frac{r}{2}]) \supset K.$$

Proof of Lemma A. Let $K' = K - g_i(Q \times [0, \frac{1}{2}])$, and assume $K' \neq \emptyset$. Since $P_i \times Q \times \{0\} \subset U_i$, K' is homotopic to a subset of $g_i(Q \times [0, \frac{1}{2}])$ and the homotopy lies in the Q-manifold $N = \tilde{M} - g_i(Q \times [0, \frac{1}{2}])$. Since $g_i(Q \times [\frac{1}{2}, \frac{3}{4}])$ is a Hilbert cube and a Z-set in the Hilbert cube $g_i(Q \times [\frac{1}{2}, \frac{3}{4}]) \subset N$, using Z-set unknotting we may replace the homotopy by another homotopy $\{\phi_t\}$ of K' into N so that ϕ_0 is identity, $\phi_1(K' \cap g_i(Q \times [\frac{1}{2}, \frac{3}{4}]))$ is identity for all t, $\phi_1(K') \subset g_i(Q \times [\frac{3}{4}, \frac{5}{4}])$ and for any $x \in K' - g_i(Q \times [\frac{3}{4}, \frac{5}{4}])$, $\{\phi_t(x)\}_t \subset N - g_i(Q \times [\frac{3}{4}, \frac{5}{4}])$. By Z-set unknotting there is a homeomorphism $f : N \to N$ such that $f|g_i(Q \times [\frac{1}{2}, \frac{3}{4}]) = \text{identity}$ and $f(K') \subset g_i(Q \times [\frac{1}{2}, \frac{3}{4}])$. Define g_i' by $g_i'(Q \times [0, \frac{1}{2}]) = g_i(Q \times [0, \frac{1}{2}])$, $g_i'(Q \times [\frac{1}{2}, 1]) = f^{-1}g_i$. g_i' is what we wanted.

By Lemma A and the engulfing lemma of [CH1] we can construct an open imbedding $h_i : Q \times [0,1)) \to \tilde{M}$ such that $\bigcup_{n,m} A_{nm} \subset h_i(Q \times [0,1))$. Let $V_i = h_i(Q \times [0,1))$ and $V = \bigcup_{i=1}^k V_i$. Then V is an open set in \tilde{M} containing the cap-set $P \times \bigcup_{n=1}^\infty Q_n \times [0,1)$; thus the complement $\tilde{M} - V$ is a Z-set [CH2]. It follows that V and \tilde{M} are homotopically equivalent, and therefore the manifold $V \times [0,1)$ and \tilde{M} are homeomorphic. Since each $V_i \times [0,1)$ is homeomorphic to $Q \times [0,1)$, $C_z(\tilde{M}) = C_z(V \times [0,1)) \leq k$.

The theory extends to the following noncompact case.
THEOREM 2. For every connected \(Q \)-manifold \(M \),
\[
C_2(M \times [0, 1)) = \text{cat}'(M).
\]

PROOF. Since \(\text{cat}'(M) \) is a homotopy invariant, \(\text{cat}'(M) = \text{cat}'(M \times [0, 1)) \leq C_2(M \times [0, 1)) \). On the other hand, suppose \(\text{cat}'(M) = k \). It can be easily shown that \(M \) has a null-homotopic closed cover \(C_1, C_2, \ldots, C_k \). Consider \(M = M \times \{0\} \subset M \times [0, 1) \). As in the proof of Theorem A, each \(C_i \subset U_i \) where \(U_i \) is an open set homeomorphic to \(Q \times [0, 1) \). Let \(g_i : Q \times [0, 1) \to U_i \) be a homeomorphism. Denote \(A_{nm} = C_i \times Q_n \times [0, m/(m+1)] \). By the same argument as in the proof of Lemma A, there is an open imbedding \(g_i' : Q \times [0, 1) \to M \) such that
\[
g_i'(Q \times [0, 1]) = g_i(Q \times [0, 1]) \quad \text{and} \quad g_i'(Q \times [0, \frac{1}{2}]) \supset A_{nm}.
\]

Following the same argument as that of Theorem 1, we conclude that \(M \times [0, 1) \) is covered by \(k \) open sets each of which is homeomorphic to \(Q \times [0, 1) \). Hence \(C_2(M \times [0, 1)) \leq k \).

REFERENCES

[MO2] ______., A quick proof of Singhof's \(\text{cat}(M \times S^1) = \text{cat}(M) + 1 \) theorem, Manuscripta Math. 42 (1983), 49-52.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, SANTA BARBARA, CALIFORNIA 93106