Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The set of balanced points with respect to $ S\sp 1$ and $ S\sp 3$ actions of maps into Banach space


Author: Neža Mramor-Kosta
Journal: Proc. Amer. Math. Soc. 102 (1988), 723-727
MSC: Primary 55N91; Secondary 47H99
DOI: https://doi.org/10.1090/S0002-9939-1988-0929010-7
MathSciNet review: 929010
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ G$ be the group of units in the field $ F$, which is either $ R$, $ C$ or $ H$, let $ X$ be a free $ G$-space, and let $ f$ be a map from $ X$ to a Banach space $ E$ over $ F$. In this paper we give an estimate for the size of the subset of $ X$ consisting of points at which the average of $ f$ is equal to zero. The result represents an extension of the Borsuk-Ulam-Yang theorem.


References [Enhancements On Off] (What's this?)

  • [1] P. E. Conner and E. E. Floyd, Fixed point free involutions and equivariant maps, Bull. Amer. Math. Soc. 66 (1960), 416-441. MR 0163310 (29:613)
  • [2] J. Dugundji and A. Granas, Fixed point theory, I, PWN, Warszawa, 1982. MR 660439 (83j:54038)
  • [3] A. Granas, An extension to functional spaces of Borsuk-Ulam theorem on antipodes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 93 pp. MR 0138977 (25:2417)
  • [4] P. Holm and E. H. Spanier, Involutions and Fredholm maps, Topology 10 (1971), 203-218. MR 0290410 (44:7591)
  • [5] J. Jaworowski, The set of balanced orbits of maps of $ {S^1}$ and $ {S^3}$ actions, Proc. Amer. Math. Soc. 297 (1986), 158-162. MR 848895 (87g:57052)
  • [6] -, Balanced orbits for fibre preserving maps of $ {S^1}$ and $ {S^3}$ actions, Proc. Transformation Groups Sympos. Poznań 1985, Lecture Notes in Math., vol. 1217, Springer-Verlag, pp. 143-150.
  • [7] J. T. Schwartz, Nonlinear functional analysis, Lecture Notes, Courant Inst. Math. Sci., New York Univ., New York, 1965; Gordon and Breach, New York, London and Paris, 1969. MR 0433481 (55:6457)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 55N91, 47H99

Retrieve articles in all journals with MSC: 55N91, 47H99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1988-0929010-7
Keywords: Average, equivariant map, compact map, characteristic class, index, coindex of equivariant map
Article copyright: © Copyright 1988 American Mathematical Society

American Mathematical Society